| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 13022 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11290 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11273 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-ss 3948 df-xr 11278 df-rp 13014 |
| This theorem is referenced by: xlemul1 13311 xlemul2 13312 xltmul1 13313 xltmul2 13314 modelico 13903 muladdmodid 13933 sgnrrp 15115 blcntrps 24356 blcntr 24357 blssexps 24370 blssex 24371 blin2 24373 neibl 24445 blnei 24446 metss 24452 metss2lem 24455 stdbdmet 24460 stdbdmopn 24462 metrest 24468 prdsxmslem2 24473 metcnp3 24484 metcnp 24485 metcnpi3 24490 txmetcnp 24491 metustid 24498 cfilucfil 24503 blval2 24506 elbl4 24507 metucn 24515 nmoix 24673 xrsmopn 24757 reperflem 24763 reconnlem2 24772 metdseq0 24799 cnllycmp 24911 lebnum 24919 xlebnum 24920 lebnumii 24921 nmhmcn 25076 lmmbr 25215 lmmbr2 25216 lmnn 25220 cfilfcls 25231 iscau2 25234 iscmet3lem2 25249 equivcfil 25256 flimcfil 25271 cmpcmet 25276 bcthlem5 25285 ellimc3 25837 pige3ALT 26486 efopnlem1 26622 efopnlem2 26623 efopn 26624 xrlimcnp 26935 efrlim 26936 efrlimOLD 26937 lgamcvg2 27022 pntlemi 27572 pntlemp 27578 ubthlem1 30856 xdivpnfrp 32912 pnfinf 33186 signsply0 34588 cnllysconn 35272 poimirlem29 37678 heicant 37684 itg2gt0cn 37704 ftc1anc 37730 areacirclem1 37737 areacirc 37742 blssp 37785 sstotbnd2 37803 isbndx 37811 isbnd2 37812 isbnd3 37813 ssbnd 37817 prdstotbnd 37823 prdsbnd2 37824 cntotbnd 37825 ismtybndlem 37835 heibor1 37839 infleinflem1 45377 limcrecl 45638 islpcn 45648 etransclem18 46261 etransclem46 46289 ioorrnopnlem 46313 sge0iunmptlemre 46424 itscnhlinecirc02p 48745 |
| Copyright terms: Public domain | W3C validator |