| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12967 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11231 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11214 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-ss 3934 df-xr 11219 df-rp 12959 |
| This theorem is referenced by: xlemul1 13257 xlemul2 13258 xltmul1 13259 xltmul2 13260 modelico 13850 muladdmodid 13882 sgnrrp 15064 blcntrps 24307 blcntr 24308 blssexps 24321 blssex 24322 blin2 24324 neibl 24396 blnei 24397 metss 24403 metss2lem 24406 stdbdmet 24411 stdbdmopn 24413 metrest 24419 prdsxmslem2 24424 metcnp3 24435 metcnp 24436 metcnpi3 24441 txmetcnp 24442 metustid 24449 cfilucfil 24454 blval2 24457 elbl4 24458 metucn 24466 nmoix 24624 xrsmopn 24708 reperflem 24714 reconnlem2 24723 metdseq0 24750 cnllycmp 24862 lebnum 24870 xlebnum 24871 lebnumii 24872 nmhmcn 25027 lmmbr 25165 lmmbr2 25166 lmnn 25170 cfilfcls 25181 iscau2 25184 iscmet3lem2 25199 equivcfil 25206 flimcfil 25221 cmpcmet 25226 bcthlem5 25235 ellimc3 25787 pige3ALT 26436 efopnlem1 26572 efopnlem2 26573 efopn 26574 xrlimcnp 26885 efrlim 26886 efrlimOLD 26887 lgamcvg2 26972 pntlemi 27522 pntlemp 27528 ubthlem1 30806 xdivpnfrp 32860 pnfinf 33144 signsply0 34549 cnllysconn 35239 poimirlem29 37650 heicant 37656 itg2gt0cn 37676 ftc1anc 37702 areacirclem1 37709 areacirc 37714 blssp 37757 sstotbnd2 37775 isbndx 37783 isbnd2 37784 isbnd3 37785 ssbnd 37789 prdstotbnd 37795 prdsbnd2 37796 cntotbnd 37797 ismtybndlem 37807 heibor1 37811 infleinflem1 45373 limcrecl 45634 islpcn 45644 etransclem18 46257 etransclem46 46285 ioorrnopnlem 46309 sge0iunmptlemre 46420 itscnhlinecirc02p 48778 |
| Copyright terms: Public domain | W3C validator |