| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12901 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11169 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ℝ*cxr 11152 ℝ+crp 12892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 df-ss 3915 df-xr 11157 df-rp 12893 |
| This theorem is referenced by: xlemul1 13191 xlemul2 13192 xltmul1 13193 xltmul2 13194 modelico 13787 muladdmodid 13819 sgnrrp 15000 blcntrps 24328 blcntr 24329 blssexps 24342 blssex 24343 blin2 24345 neibl 24417 blnei 24418 metss 24424 metss2lem 24427 stdbdmet 24432 stdbdmopn 24434 metrest 24440 prdsxmslem2 24445 metcnp3 24456 metcnp 24457 metcnpi3 24462 txmetcnp 24463 metustid 24470 cfilucfil 24475 blval2 24478 elbl4 24479 metucn 24487 nmoix 24645 xrsmopn 24729 reperflem 24735 reconnlem2 24744 metdseq0 24771 cnllycmp 24883 lebnum 24891 xlebnum 24892 lebnumii 24893 nmhmcn 25048 lmmbr 25186 lmmbr2 25187 lmnn 25191 cfilfcls 25202 iscau2 25205 iscmet3lem2 25220 equivcfil 25227 flimcfil 25242 cmpcmet 25247 bcthlem5 25256 ellimc3 25808 pige3ALT 26457 efopnlem1 26593 efopnlem2 26594 efopn 26595 xrlimcnp 26906 efrlim 26907 efrlimOLD 26908 lgamcvg2 26993 pntlemi 27543 pntlemp 27549 ubthlem1 30852 xdivpnfrp 32920 pnfinf 33159 signsply0 34585 cnllysconn 35310 poimirlem29 37709 heicant 37715 itg2gt0cn 37735 ftc1anc 37761 areacirclem1 37768 areacirc 37773 blssp 37816 sstotbnd2 37834 isbndx 37842 isbnd2 37843 isbnd3 37844 ssbnd 37848 prdstotbnd 37854 prdsbnd2 37855 cntotbnd 37856 ismtybndlem 37866 heibor1 37870 infleinflem1 45492 limcrecl 45753 islpcn 45761 etransclem18 46374 etransclem46 46402 ioorrnopnlem 46426 sge0iunmptlemre 46537 itscnhlinecirc02p 48910 |
| Copyright terms: Public domain | W3C validator |