| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12960 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11224 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11207 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-ss 3931 df-xr 11212 df-rp 12952 |
| This theorem is referenced by: xlemul1 13250 xlemul2 13251 xltmul1 13252 xltmul2 13253 modelico 13843 muladdmodid 13875 sgnrrp 15057 blcntrps 24300 blcntr 24301 blssexps 24314 blssex 24315 blin2 24317 neibl 24389 blnei 24390 metss 24396 metss2lem 24399 stdbdmet 24404 stdbdmopn 24406 metrest 24412 prdsxmslem2 24417 metcnp3 24428 metcnp 24429 metcnpi3 24434 txmetcnp 24435 metustid 24442 cfilucfil 24447 blval2 24450 elbl4 24451 metucn 24459 nmoix 24617 xrsmopn 24701 reperflem 24707 reconnlem2 24716 metdseq0 24743 cnllycmp 24855 lebnum 24863 xlebnum 24864 lebnumii 24865 nmhmcn 25020 lmmbr 25158 lmmbr2 25159 lmnn 25163 cfilfcls 25174 iscau2 25177 iscmet3lem2 25192 equivcfil 25199 flimcfil 25214 cmpcmet 25219 bcthlem5 25228 ellimc3 25780 pige3ALT 26429 efopnlem1 26565 efopnlem2 26566 efopn 26567 xrlimcnp 26878 efrlim 26879 efrlimOLD 26880 lgamcvg2 26965 pntlemi 27515 pntlemp 27521 ubthlem1 30799 xdivpnfrp 32853 pnfinf 33137 signsply0 34542 cnllysconn 35232 poimirlem29 37643 heicant 37649 itg2gt0cn 37669 ftc1anc 37695 areacirclem1 37702 areacirc 37707 blssp 37750 sstotbnd2 37768 isbndx 37776 isbnd2 37777 isbnd3 37778 ssbnd 37782 prdstotbnd 37788 prdsbnd2 37789 cntotbnd 37790 ismtybndlem 37800 heibor1 37804 infleinflem1 45366 limcrecl 45627 islpcn 45637 etransclem18 46250 etransclem46 46278 ioorrnopnlem 46302 sge0iunmptlemre 46413 itscnhlinecirc02p 48774 |
| Copyright terms: Public domain | W3C validator |