![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13041 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 11309 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℝ*cxr 11292 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-ss 3980 df-xr 11297 df-rp 13033 |
This theorem is referenced by: xlemul1 13329 xlemul2 13330 xltmul1 13331 xltmul2 13332 modelico 13918 muladdmodid 13948 sgnrrp 15127 blcntrps 24438 blcntr 24439 blssexps 24452 blssex 24453 blin2 24455 neibl 24530 blnei 24531 metss 24537 metss2lem 24540 stdbdmet 24545 stdbdmopn 24547 metrest 24553 prdsxmslem2 24558 metcnp3 24569 metcnp 24570 metcnpi3 24575 txmetcnp 24576 metustid 24583 cfilucfil 24588 blval2 24591 elbl4 24592 metucn 24600 nmoix 24766 xrsmopn 24848 reperflem 24854 reconnlem2 24863 metdseq0 24890 cnllycmp 25002 lebnum 25010 xlebnum 25011 lebnumii 25012 nmhmcn 25167 lmmbr 25306 lmmbr2 25307 lmnn 25311 cfilfcls 25322 iscau2 25325 iscmet3lem2 25340 equivcfil 25347 flimcfil 25362 cmpcmet 25367 bcthlem5 25376 ellimc3 25929 pige3ALT 26577 efopnlem1 26713 efopnlem2 26714 efopn 26715 xrlimcnp 27026 efrlim 27027 efrlimOLD 27028 lgamcvg2 27113 pntlemi 27663 pntlemp 27669 ubthlem1 30899 xdivpnfrp 32900 pnfinf 33173 signsply0 34545 cnllysconn 35230 poimirlem29 37636 heicant 37642 itg2gt0cn 37662 ftc1anc 37688 areacirclem1 37695 areacirc 37700 blssp 37743 sstotbnd2 37761 isbndx 37769 isbnd2 37770 isbnd3 37771 ssbnd 37775 prdstotbnd 37781 prdsbnd2 37782 cntotbnd 37783 ismtybndlem 37793 heibor1 37797 infleinflem1 45320 limcrecl 45585 islpcn 45595 etransclem18 46208 etransclem46 46236 ioorrnopnlem 46260 sge0iunmptlemre 46371 itscnhlinecirc02p 48635 |
Copyright terms: Public domain | W3C validator |