Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12667 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 10956 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℝ*cxr 10939 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-xr 10944 df-rp 12660 |
This theorem is referenced by: xlemul1 12953 xlemul2 12954 xltmul1 12955 xltmul2 12956 modelico 13529 muladdmodid 13559 sgnrrp 14730 blcntrps 23473 blcntr 23474 blssexps 23487 blssex 23488 blin2 23490 neibl 23563 blnei 23564 metss 23570 metss2lem 23573 stdbdmet 23578 stdbdmopn 23580 metrest 23586 prdsxmslem2 23591 metcnp3 23602 metcnp 23603 metcnpi3 23608 txmetcnp 23609 metustid 23616 cfilucfil 23621 blval2 23624 elbl4 23625 metucn 23633 nmoix 23799 xrsmopn 23881 reperflem 23887 reconnlem2 23896 metdseq0 23923 cnllycmp 24025 lebnum 24033 xlebnum 24034 lebnumii 24035 nmhmcn 24189 lmmbr 24327 lmmbr2 24328 lmnn 24332 cfilfcls 24343 iscau2 24346 iscmet3lem2 24361 equivcfil 24368 flimcfil 24383 cmpcmet 24388 bcthlem5 24397 ellimc3 24948 pige3ALT 25581 efopnlem1 25716 efopnlem2 25717 efopn 25718 xrlimcnp 26023 efrlim 26024 lgamcvg2 26109 pntlemi 26657 pntlemp 26663 ubthlem1 29133 xdivpnfrp 31109 pnfinf 31339 signsply0 32430 cnllysconn 33107 poimirlem29 35733 heicant 35739 itg2gt0cn 35759 ftc1anc 35785 areacirclem1 35792 areacirc 35797 blssp 35841 sstotbnd2 35859 isbndx 35867 isbnd2 35868 isbnd3 35869 ssbnd 35873 prdstotbnd 35879 prdsbnd2 35880 cntotbnd 35881 ismtybndlem 35891 heibor1 35895 infleinflem1 42799 limcrecl 43060 islpcn 43070 etransclem18 43683 etransclem46 43711 ioorrnopnlem 43735 sge0iunmptlemre 43843 itscnhlinecirc02p 46019 |
Copyright terms: Public domain | W3C validator |