![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13065 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 11340 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℝ*cxr 11323 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-ss 3993 df-xr 11328 df-rp 13058 |
This theorem is referenced by: xlemul1 13352 xlemul2 13353 xltmul1 13354 xltmul2 13355 modelico 13932 muladdmodid 13962 sgnrrp 15140 blcntrps 24443 blcntr 24444 blssexps 24457 blssex 24458 blin2 24460 neibl 24535 blnei 24536 metss 24542 metss2lem 24545 stdbdmet 24550 stdbdmopn 24552 metrest 24558 prdsxmslem2 24563 metcnp3 24574 metcnp 24575 metcnpi3 24580 txmetcnp 24581 metustid 24588 cfilucfil 24593 blval2 24596 elbl4 24597 metucn 24605 nmoix 24771 xrsmopn 24853 reperflem 24859 reconnlem2 24868 metdseq0 24895 cnllycmp 25007 lebnum 25015 xlebnum 25016 lebnumii 25017 nmhmcn 25172 lmmbr 25311 lmmbr2 25312 lmnn 25316 cfilfcls 25327 iscau2 25330 iscmet3lem2 25345 equivcfil 25352 flimcfil 25367 cmpcmet 25372 bcthlem5 25381 ellimc3 25934 pige3ALT 26580 efopnlem1 26716 efopnlem2 26717 efopn 26718 xrlimcnp 27029 efrlim 27030 efrlimOLD 27031 lgamcvg2 27116 pntlemi 27666 pntlemp 27672 ubthlem1 30902 xdivpnfrp 32897 pnfinf 33163 signsply0 34528 cnllysconn 35213 poimirlem29 37609 heicant 37615 itg2gt0cn 37635 ftc1anc 37661 areacirclem1 37668 areacirc 37673 blssp 37716 sstotbnd2 37734 isbndx 37742 isbnd2 37743 isbnd3 37744 ssbnd 37748 prdstotbnd 37754 prdsbnd2 37755 cntotbnd 37756 ismtybndlem 37766 heibor1 37770 infleinflem1 45285 limcrecl 45550 islpcn 45560 etransclem18 46173 etransclem46 46201 ioorrnopnlem 46225 sge0iunmptlemre 46336 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |