| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12920 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11184 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11167 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-un 3910 df-ss 3922 df-xr 11172 df-rp 12912 |
| This theorem is referenced by: xlemul1 13210 xlemul2 13211 xltmul1 13212 xltmul2 13213 modelico 13803 muladdmodid 13835 sgnrrp 15016 blcntrps 24316 blcntr 24317 blssexps 24330 blssex 24331 blin2 24333 neibl 24405 blnei 24406 metss 24412 metss2lem 24415 stdbdmet 24420 stdbdmopn 24422 metrest 24428 prdsxmslem2 24433 metcnp3 24444 metcnp 24445 metcnpi3 24450 txmetcnp 24451 metustid 24458 cfilucfil 24463 blval2 24466 elbl4 24467 metucn 24475 nmoix 24633 xrsmopn 24717 reperflem 24723 reconnlem2 24732 metdseq0 24759 cnllycmp 24871 lebnum 24879 xlebnum 24880 lebnumii 24881 nmhmcn 25036 lmmbr 25174 lmmbr2 25175 lmnn 25179 cfilfcls 25190 iscau2 25193 iscmet3lem2 25208 equivcfil 25215 flimcfil 25230 cmpcmet 25235 bcthlem5 25244 ellimc3 25796 pige3ALT 26445 efopnlem1 26581 efopnlem2 26582 efopn 26583 xrlimcnp 26894 efrlim 26895 efrlimOLD 26896 lgamcvg2 26981 pntlemi 27531 pntlemp 27537 ubthlem1 30832 xdivpnfrp 32886 pnfinf 33135 signsply0 34518 cnllysconn 35217 poimirlem29 37628 heicant 37634 itg2gt0cn 37654 ftc1anc 37680 areacirclem1 37687 areacirc 37692 blssp 37735 sstotbnd2 37753 isbndx 37761 isbnd2 37762 isbnd3 37763 ssbnd 37767 prdstotbnd 37773 prdsbnd2 37774 cntotbnd 37775 ismtybndlem 37785 heibor1 37789 infleinflem1 45350 limcrecl 45611 islpcn 45621 etransclem18 46234 etransclem46 46262 ioorrnopnlem 46286 sge0iunmptlemre 46397 itscnhlinecirc02p 48771 |
| Copyright terms: Public domain | W3C validator |