![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12978 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 11260 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ℝ*cxr 11243 ℝ+crp 12970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-xr 11248 df-rp 12971 |
This theorem is referenced by: xlemul1 13265 xlemul2 13266 xltmul1 13267 xltmul2 13268 modelico 13842 muladdmodid 13872 sgnrrp 15034 blcntrps 24228 blcntr 24229 blssexps 24242 blssex 24243 blin2 24245 neibl 24320 blnei 24321 metss 24327 metss2lem 24330 stdbdmet 24335 stdbdmopn 24337 metrest 24343 prdsxmslem2 24348 metcnp3 24359 metcnp 24360 metcnpi3 24365 txmetcnp 24366 metustid 24373 cfilucfil 24378 blval2 24381 elbl4 24382 metucn 24390 nmoix 24556 xrsmopn 24638 reperflem 24644 reconnlem2 24653 metdseq0 24680 cnllycmp 24792 lebnum 24800 xlebnum 24801 lebnumii 24802 nmhmcn 24957 lmmbr 25096 lmmbr2 25097 lmnn 25101 cfilfcls 25112 iscau2 25115 iscmet3lem2 25130 equivcfil 25137 flimcfil 25152 cmpcmet 25157 bcthlem5 25166 ellimc3 25718 pige3ALT 26359 efopnlem1 26494 efopnlem2 26495 efopn 26496 xrlimcnp 26804 efrlim 26805 efrlimOLD 26806 lgamcvg2 26891 pntlemi 27441 pntlemp 27447 ubthlem1 30547 xdivpnfrp 32523 pnfinf 32756 signsply0 34017 cnllysconn 34691 poimirlem29 36973 heicant 36979 itg2gt0cn 36999 ftc1anc 37025 areacirclem1 37032 areacirc 37037 blssp 37080 sstotbnd2 37098 isbndx 37106 isbnd2 37107 isbnd3 37108 ssbnd 37112 prdstotbnd 37118 prdsbnd2 37119 cntotbnd 37120 ismtybndlem 37130 heibor1 37134 infleinflem1 44531 limcrecl 44796 islpcn 44806 etransclem18 45419 etransclem46 45447 ioorrnopnlem 45471 sge0iunmptlemre 45582 itscnhlinecirc02p 47625 |
Copyright terms: Public domain | W3C validator |