| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12896 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11159 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ℝ*cxr 11142 ℝ+crp 12887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3907 df-ss 3919 df-xr 11147 df-rp 12888 |
| This theorem is referenced by: xlemul1 13186 xlemul2 13187 xltmul1 13188 xltmul2 13189 modelico 13782 muladdmodid 13814 sgnrrp 14995 blcntrps 24325 blcntr 24326 blssexps 24339 blssex 24340 blin2 24342 neibl 24414 blnei 24415 metss 24421 metss2lem 24424 stdbdmet 24429 stdbdmopn 24431 metrest 24437 prdsxmslem2 24442 metcnp3 24453 metcnp 24454 metcnpi3 24459 txmetcnp 24460 metustid 24467 cfilucfil 24472 blval2 24475 elbl4 24476 metucn 24484 nmoix 24642 xrsmopn 24726 reperflem 24732 reconnlem2 24741 metdseq0 24768 cnllycmp 24880 lebnum 24888 xlebnum 24889 lebnumii 24890 nmhmcn 25045 lmmbr 25183 lmmbr2 25184 lmnn 25188 cfilfcls 25199 iscau2 25202 iscmet3lem2 25217 equivcfil 25224 flimcfil 25239 cmpcmet 25244 bcthlem5 25253 ellimc3 25805 pige3ALT 26454 efopnlem1 26590 efopnlem2 26591 efopn 26592 xrlimcnp 26903 efrlim 26904 efrlimOLD 26905 lgamcvg2 26990 pntlemi 27540 pntlemp 27546 ubthlem1 30845 xdivpnfrp 32908 pnfinf 33147 signsply0 34559 cnllysconn 35277 poimirlem29 37688 heicant 37694 itg2gt0cn 37714 ftc1anc 37740 areacirclem1 37747 areacirc 37752 blssp 37795 sstotbnd2 37813 isbndx 37821 isbnd2 37822 isbnd3 37823 ssbnd 37827 prdstotbnd 37833 prdsbnd2 37834 cntotbnd 37835 ismtybndlem 37845 heibor1 37849 infleinflem1 45407 limcrecl 45668 islpcn 45676 etransclem18 46289 etransclem46 46317 ioorrnopnlem 46341 sge0iunmptlemre 46452 itscnhlinecirc02p 48816 |
| Copyright terms: Public domain | W3C validator |