Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpxr | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12738 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 11025 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℝ*cxr 11008 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-xr 11013 df-rp 12731 |
This theorem is referenced by: xlemul1 13024 xlemul2 13025 xltmul1 13026 xltmul2 13027 modelico 13601 muladdmodid 13631 sgnrrp 14802 blcntrps 23565 blcntr 23566 blssexps 23579 blssex 23580 blin2 23582 neibl 23657 blnei 23658 metss 23664 metss2lem 23667 stdbdmet 23672 stdbdmopn 23674 metrest 23680 prdsxmslem2 23685 metcnp3 23696 metcnp 23697 metcnpi3 23702 txmetcnp 23703 metustid 23710 cfilucfil 23715 blval2 23718 elbl4 23719 metucn 23727 nmoix 23893 xrsmopn 23975 reperflem 23981 reconnlem2 23990 metdseq0 24017 cnllycmp 24119 lebnum 24127 xlebnum 24128 lebnumii 24129 nmhmcn 24283 lmmbr 24422 lmmbr2 24423 lmnn 24427 cfilfcls 24438 iscau2 24441 iscmet3lem2 24456 equivcfil 24463 flimcfil 24478 cmpcmet 24483 bcthlem5 24492 ellimc3 25043 pige3ALT 25676 efopnlem1 25811 efopnlem2 25812 efopn 25813 xrlimcnp 26118 efrlim 26119 lgamcvg2 26204 pntlemi 26752 pntlemp 26758 ubthlem1 29232 xdivpnfrp 31207 pnfinf 31437 signsply0 32530 cnllysconn 33207 poimirlem29 35806 heicant 35812 itg2gt0cn 35832 ftc1anc 35858 areacirclem1 35865 areacirc 35870 blssp 35914 sstotbnd2 35932 isbndx 35940 isbnd2 35941 isbnd3 35942 ssbnd 35946 prdstotbnd 35952 prdsbnd2 35953 cntotbnd 35954 ismtybndlem 35964 heibor1 35968 infleinflem1 42909 limcrecl 43170 islpcn 43180 etransclem18 43793 etransclem46 43821 ioorrnopnlem 43845 sge0iunmptlemre 43953 itscnhlinecirc02p 46131 |
Copyright terms: Public domain | W3C validator |