![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blcntr | Structured version Visualization version GIF version |
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blcntr | β’ ((π· β (βMetβπ) β§ π β π β§ π β β+) β π β (π(ballβπ·)π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12983 | . . 3 β’ (π β β+ β π β β*) | |
2 | rpgt0 12986 | . . 3 β’ (π β β+ β 0 < π ) | |
3 | 1, 2 | jca 513 | . 2 β’ (π β β+ β (π β β* β§ 0 < π )) |
4 | xblcntr 23917 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β π β (π(ballβπ·)π )) | |
5 | 3, 4 | syl3an3 1166 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β+) β π β (π(ballβπ·)π )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 β wcel 2107 class class class wbr 5149 βcfv 6544 (class class class)co 7409 0cc0 11110 β*cxr 11247 < clt 11248 β+crp 12974 βMetcxmet 20929 ballcbl 20931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-xr 11252 df-rp 12975 df-psmet 20936 df-xmet 20937 df-bl 20939 |
This theorem is referenced by: bln0 23921 unirnbl 23926 blssex 23933 neibl 24010 blnei 24011 metss 24017 methaus 24029 met1stc 24030 met2ndci 24031 metrest 24033 prdsxmslem2 24038 metcnp3 24049 tgioo 24312 zdis 24332 metnrmlem2 24376 cnllycmp 24472 nmhmcn 24636 lmmbr 24775 cfilfcls 24791 iscmet3lem2 24809 caubl 24825 caublcls 24826 flimcfil 24831 ellimc3 25396 ulmdvlem1 25912 efopn 26166 logtayl 26168 xrlimcnp 26473 efrlim 26474 lgamucov 26542 cnllysconn 34267 poimirlem30 36566 blbnd 36703 heibor1lem 36725 heibor1 36726 binomcxplemnotnn0 43163 hoiqssbl 45389 |
Copyright terms: Public domain | W3C validator |