MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcntr Structured version   Visualization version   GIF version

Theorem blcntr 24444
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blcntr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem blcntr
StepHypRef Expression
1 rpxr 13066 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 13069 . . 3 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 511 . 2 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 xblcntr 24442 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
53, 4syl3an3 1165 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323   < clt 11324  +crp 13057  ∞Metcxmet 21372  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-xr 11328  df-rp 13058  df-psmet 21379  df-xmet 21380  df-bl 21382
This theorem is referenced by:  bln0  24446  unirnbl  24451  blssex  24458  neibl  24535  blnei  24536  metss  24542  methaus  24554  met1stc  24555  met2ndci  24556  metrest  24558  prdsxmslem2  24563  metcnp3  24574  tgioo  24837  zdis  24857  metnrmlem2  24901  cnllycmp  25007  nmhmcn  25172  lmmbr  25311  cfilfcls  25327  iscmet3lem2  25345  caubl  25361  caublcls  25362  flimcfil  25367  ellimc3  25934  ulmdvlem1  26461  efopn  26718  logtayl  26720  xrlimcnp  27029  efrlim  27030  efrlimOLD  27031  lgamucov  27099  cnllysconn  35213  poimirlem30  37610  blbnd  37747  heibor1lem  37769  heibor1  37770  binomcxplemnotnn0  44325  hoiqssbl  46546
  Copyright terms: Public domain W3C validator