| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blcntr | Structured version Visualization version GIF version | ||
| Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| blcntr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr 12900 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
| 2 | rpgt0 12903 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
| 4 | xblcntr 24326 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | |
| 5 | 3, 4 | syl3an3 1165 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℝ*cxr 11145 < clt 11146 ℝ+crp 12890 ∞Metcxmet 21276 ballcbl 21278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-xr 11150 df-rp 12891 df-psmet 21283 df-xmet 21284 df-bl 21286 |
| This theorem is referenced by: bln0 24330 unirnbl 24335 blssex 24342 neibl 24416 blnei 24417 metss 24423 methaus 24435 met1stc 24436 met2ndci 24437 metrest 24439 prdsxmslem2 24444 metcnp3 24455 tgioo 24711 zdis 24732 metnrmlem2 24776 cnllycmp 24882 nmhmcn 25047 lmmbr 25185 cfilfcls 25201 iscmet3lem2 25219 caubl 25235 caublcls 25236 flimcfil 25241 ellimc3 25807 ulmdvlem1 26336 efopn 26594 logtayl 26596 xrlimcnp 26905 efrlim 26906 efrlimOLD 26907 lgamucov 26975 cnllysconn 35289 poimirlem30 37689 blbnd 37826 heibor1lem 37848 heibor1 37849 binomcxplemnotnn0 44448 hoiqssbl 46722 |
| Copyright terms: Public domain | W3C validator |