MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcntr Structured version   Visualization version   GIF version

Theorem blcntr 24328
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blcntr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem blcntr
StepHypRef Expression
1 rpxr 12900 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 12903 . . 3 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 511 . 2 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 xblcntr 24326 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
53, 4syl3an3 1165 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  0cc0 11006  *cxr 11145   < clt 11146  +crp 12890  ∞Metcxmet 21276  ballcbl 21278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-xr 11150  df-rp 12891  df-psmet 21283  df-xmet 21284  df-bl 21286
This theorem is referenced by:  bln0  24330  unirnbl  24335  blssex  24342  neibl  24416  blnei  24417  metss  24423  methaus  24435  met1stc  24436  met2ndci  24437  metrest  24439  prdsxmslem2  24444  metcnp3  24455  tgioo  24711  zdis  24732  metnrmlem2  24776  cnllycmp  24882  nmhmcn  25047  lmmbr  25185  cfilfcls  25201  iscmet3lem2  25219  caubl  25235  caublcls  25236  flimcfil  25241  ellimc3  25807  ulmdvlem1  26336  efopn  26594  logtayl  26596  xrlimcnp  26905  efrlim  26906  efrlimOLD  26907  lgamucov  26975  cnllysconn  35289  poimirlem30  37689  blbnd  37826  heibor1lem  37848  heibor1  37849  binomcxplemnotnn0  44448  hoiqssbl  46722
  Copyright terms: Public domain W3C validator