![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blcntr | Structured version Visualization version GIF version |
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blcntr | β’ ((π· β (βMetβπ) β§ π β π β§ π β β+) β π β (π(ballβπ·)π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12982 | . . 3 β’ (π β β+ β π β β*) | |
2 | rpgt0 12985 | . . 3 β’ (π β β+ β 0 < π ) | |
3 | 1, 2 | jca 512 | . 2 β’ (π β β+ β (π β β* β§ 0 < π )) |
4 | xblcntr 23916 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β π β (π(ballβπ·)π )) | |
5 | 3, 4 | syl3an3 1165 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β+) β π β (π(ballβπ·)π )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7408 0cc0 11109 β*cxr 11246 < clt 11247 β+crp 12973 βMetcxmet 20928 ballcbl 20930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-xr 11251 df-rp 12974 df-psmet 20935 df-xmet 20936 df-bl 20938 |
This theorem is referenced by: bln0 23920 unirnbl 23925 blssex 23932 neibl 24009 blnei 24010 metss 24016 methaus 24028 met1stc 24029 met2ndci 24030 metrest 24032 prdsxmslem2 24037 metcnp3 24048 tgioo 24311 zdis 24331 metnrmlem2 24375 cnllycmp 24471 nmhmcn 24635 lmmbr 24774 cfilfcls 24790 iscmet3lem2 24808 caubl 24824 caublcls 24825 flimcfil 24830 ellimc3 25395 ulmdvlem1 25911 efopn 26165 logtayl 26167 xrlimcnp 26470 efrlim 26471 lgamucov 26539 cnllysconn 34231 poimirlem30 36513 blbnd 36650 heibor1lem 36672 heibor1 36673 binomcxplemnotnn0 43105 hoiqssbl 45331 |
Copyright terms: Public domain | W3C validator |