MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcntr Structured version   Visualization version   GIF version

Theorem blcntr 24308
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blcntr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem blcntr
StepHypRef Expression
1 rpxr 12968 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 12971 . . 3 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 511 . 2 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 xblcntr 24306 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
53, 4syl3an3 1165 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214   < clt 11215  +crp 12958  ∞Metcxmet 21256  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-xr 11219  df-rp 12959  df-psmet 21263  df-xmet 21264  df-bl 21266
This theorem is referenced by:  bln0  24310  unirnbl  24315  blssex  24322  neibl  24396  blnei  24397  metss  24403  methaus  24415  met1stc  24416  met2ndci  24417  metrest  24419  prdsxmslem2  24424  metcnp3  24435  tgioo  24691  zdis  24712  metnrmlem2  24756  cnllycmp  24862  nmhmcn  25027  lmmbr  25165  cfilfcls  25181  iscmet3lem2  25199  caubl  25215  caublcls  25216  flimcfil  25221  ellimc3  25787  ulmdvlem1  26316  efopn  26574  logtayl  26576  xrlimcnp  26885  efrlim  26886  efrlimOLD  26887  lgamucov  26955  cnllysconn  35239  poimirlem30  37651  blbnd  37788  heibor1lem  37810  heibor1  37811  binomcxplemnotnn0  44352  hoiqssbl  46630
  Copyright terms: Public domain W3C validator