Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blcntr | Structured version Visualization version GIF version |
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blcntr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12736 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | rpgt0 12739 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
4 | xblcntr 23560 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | |
5 | 3, 4 | syl3an3 1164 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 0cc0 10870 ℝ*cxr 11007 < clt 11008 ℝ+crp 12727 ∞Metcxmet 20578 ballcbl 20580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-map 8598 df-xr 11012 df-rp 12728 df-psmet 20585 df-xmet 20586 df-bl 20588 |
This theorem is referenced by: bln0 23564 unirnbl 23569 blssex 23576 neibl 23653 blnei 23654 metss 23660 methaus 23672 met1stc 23673 met2ndci 23674 metrest 23676 prdsxmslem2 23681 metcnp3 23692 tgioo 23955 zdis 23975 metnrmlem2 24019 cnllycmp 24115 nmhmcn 24279 lmmbr 24418 cfilfcls 24434 iscmet3lem2 24452 caubl 24468 caublcls 24469 flimcfil 24474 ellimc3 25039 ulmdvlem1 25555 efopn 25809 logtayl 25811 xrlimcnp 26114 efrlim 26115 lgamucov 26183 cnllysconn 33201 poimirlem30 35801 blbnd 35939 heibor1lem 35961 heibor1 35962 binomcxplemnotnn0 41942 hoiqssbl 44132 |
Copyright terms: Public domain | W3C validator |