![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blcntr | Structured version Visualization version GIF version |
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blcntr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 13066 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | rpgt0 13069 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
4 | xblcntr 24442 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | |
5 | 3, 4 | syl3an3 1165 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℝ*cxr 11323 < clt 11324 ℝ+crp 13057 ∞Metcxmet 21372 ballcbl 21374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-xr 11328 df-rp 13058 df-psmet 21379 df-xmet 21380 df-bl 21382 |
This theorem is referenced by: bln0 24446 unirnbl 24451 blssex 24458 neibl 24535 blnei 24536 metss 24542 methaus 24554 met1stc 24555 met2ndci 24556 metrest 24558 prdsxmslem2 24563 metcnp3 24574 tgioo 24837 zdis 24857 metnrmlem2 24901 cnllycmp 25007 nmhmcn 25172 lmmbr 25311 cfilfcls 25327 iscmet3lem2 25345 caubl 25361 caublcls 25362 flimcfil 25367 ellimc3 25934 ulmdvlem1 26461 efopn 26718 logtayl 26720 xrlimcnp 27029 efrlim 27030 efrlimOLD 27031 lgamucov 27099 cnllysconn 35213 poimirlem30 37610 blbnd 37747 heibor1lem 37769 heibor1 37770 binomcxplemnotnn0 44325 hoiqssbl 46546 |
Copyright terms: Public domain | W3C validator |