Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Visualization version   GIF version

Theorem cnpwstotbnd 35882
Description: A subset of 𝐴𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
cnpwstotbnd.d 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cnpwstotbnd ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))

Proof of Theorem cnpwstotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})) = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))
2 eqid 2738 . . 3 (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
3 eqid 2738 . . 3 (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))
4 eqid 2738 . . 3 ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
5 eqid 2738 . . 3 (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
6 fvexd 6771 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (Scalar‘(ℂflds 𝐴)) ∈ V)
7 simpr 484 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
8 ovex 7288 . . . 4 (ℂflds 𝐴) ∈ V
9 fnconstg 6646 . . . 4 ((ℂflds 𝐴) ∈ V → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
108, 9mp1i 13 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
11 eqid 2738 . . 3 ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋))
12 cnfldms 23845 . . . . . 6 fld ∈ MetSp
13 cnex 10883 . . . . . . . 8 ℂ ∈ V
1413ssex 5240 . . . . . . 7 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1514ad2antrr 722 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 ∈ V)
16 ressms 23588 . . . . . 6 ((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂflds 𝐴) ∈ MetSp)
1712, 15, 16sylancr 586 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (ℂflds 𝐴) ∈ MetSp)
18 eqid 2738 . . . . . 6 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
19 eqid 2738 . . . . . 6 ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2018, 19msmet 23518 . . . . 5 ((ℂflds 𝐴) ∈ MetSp → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
2117, 20syl 17 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
228fvconst2 7061 . . . . . . 7 (𝑥𝐼 → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2322adantl 481 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2423fveq2d 6760 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (dist‘(ℂflds 𝐴)))
2523fveq2d 6760 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘(ℂflds 𝐴)))
2625sqxpeqd 5612 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2724, 26reseq12d 5881 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))))
2825fveq2d 6760 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = (Met‘(Base‘(ℂflds 𝐴))))
2921, 27, 283eltr4d 2854 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
30 totbndbnd 35874 . . . . . 6 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
31 eqid 2738 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
32 cnfldbas 20514 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3331, 32ressbas2 16875 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 = (Base‘(ℂflds 𝐴)))
3433ad2antrr 722 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 = (Base‘(ℂflds 𝐴)))
3534fveq2d 6760 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘𝐴) = (Met‘(Base‘(ℂflds 𝐴))))
3621, 35eleqtrrd 2842 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴))
37 eqid 2738 . . . . . . . . 9 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦))
3837bnd2lem 35876 . . . . . . . 8 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦𝐴)
3938ex 412 . . . . . . 7 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4036, 39syl 17 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4130, 40syl5 34 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦𝐴))
42 eqid 2738 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))
4342cntotbnd 35881 . . . . . . . 8 (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
4443a1i 11 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
4534sseq2d 3949 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴𝑦 ⊆ (Base‘(ℂflds 𝐴))))
4645biimpa 476 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝑦 ⊆ (Base‘(ℂflds 𝐴)))
47 xpss12 5595 . . . . . . . . . . 11 ((𝑦 ⊆ (Base‘(ℂflds 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂflds 𝐴))) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4846, 46, 47syl2anc 583 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4948resabs1d 5911 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5015adantr 480 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝐴 ∈ V)
51 cnfldds 20520 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℂfld)
5231, 51ressds 17039 . . . . . . . . . . 11 (𝐴 ∈ V → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5350, 52syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5453reseq1d 5879 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5549, 54eqtr4d 2781 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)))
5655eleq1d 2823 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
5755eleq1d 2823 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5844, 56, 573bitr4d 310 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5958ex 412 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴 → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))))
6041, 40, 59pm5.21ndd 380 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6127reseq1d 5879 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)))
6261eleq1d 2823 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
6361eleq1d 2823 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6460, 62, 633bitr4d 310 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
651, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64prdsbnd2 35880 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
66 cnpwstotbnd.d . . . 4 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
67 cnpwstotbnd.y . . . . . . . 8 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
68 eqid 2738 . . . . . . . 8 (Scalar‘(ℂflds 𝐴)) = (Scalar‘(ℂflds 𝐴))
6967, 68pwsval 17114 . . . . . . 7 (((ℂflds 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
708, 7, 69sylancr 586 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
7170fveq2d 6760 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (dist‘𝑌) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))))
7271reseq1d 5879 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → ((dist‘𝑌) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7366, 72syl5eq 2791 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7473eleq1d 2823 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋)))
7573eleq1d 2823 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
7665, 74, 753bitr4d 310 1 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558   × cxp 5578  cres 5582  ccom 5584   Fn wfn 6413  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cmin 11135  abscabs 14873  Basecbs 16840  s cress 16867  Scalarcsca 16891  distcds 16897  Xscprds 17073  s cpws 17074  Metcmet 20496  fldccnfld 20510  MetSpcms 23379  TotBndctotbnd 35851  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-topgen 17071  df-prds 17075  df-pws 17077  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-totbnd 35853  df-bnd 35864
This theorem is referenced by:  rrntotbnd  35921
  Copyright terms: Public domain W3C validator