Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})) =
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
= (Base‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
3 | | eqid 2738 |
. . 3
⊢
(Base‘((𝐼
× {(ℂfld ↾s 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) |
4 | | eqid 2738 |
. . 3
⊢
((dist‘((𝐼
× {(ℂfld ↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) |
5 | | eqid 2738 |
. . 3
⊢
(dist‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
= (dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
6 | | fvexd 6771 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(Scalar‘(ℂfld ↾s 𝐴)) ∈ V) |
7 | | simpr 484 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin) |
8 | | ovex 7288 |
. . . 4
⊢
(ℂfld ↾s 𝐴) ∈ V |
9 | | fnconstg 6646 |
. . . 4
⊢
((ℂfld ↾s 𝐴) ∈ V → (𝐼 × {(ℂfld
↾s 𝐴)}) Fn
𝐼) |
10 | 8, 9 | mp1i 13 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂfld
↾s 𝐴)}) Fn
𝐼) |
11 | | eqid 2738 |
. . 3
⊢
((dist‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) |
12 | | cnfldms 23845 |
. . . . . 6
⊢
ℂfld ∈ MetSp |
13 | | cnex 10883 |
. . . . . . . 8
⊢ ℂ
∈ V |
14 | 13 | ssex 5240 |
. . . . . . 7
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
15 | 14 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ V) |
16 | | ressms 23588 |
. . . . . 6
⊢
((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂfld
↾s 𝐴)
∈ MetSp) |
17 | 12, 15, 16 | sylancr 586 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (ℂfld
↾s 𝐴)
∈ MetSp) |
18 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(ℂfld ↾s 𝐴)) = (Base‘(ℂfld
↾s 𝐴)) |
19 | | eqid 2738 |
. . . . . 6
⊢
((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) = ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) |
20 | 18, 19 | msmet 23518 |
. . . . 5
⊢
((ℂfld ↾s 𝐴) ∈ MetSp →
((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
21 | 17, 20 | syl 17 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
22 | 8 | fvconst2 7061 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 → ((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥) = (ℂfld
↾s 𝐴)) |
23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥) = (ℂfld
↾s 𝐴)) |
24 | 23 | fveq2d 6760 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) = (dist‘(ℂfld
↾s 𝐴))) |
25 | 23 | fveq2d 6760 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) = (Base‘(ℂfld
↾s 𝐴))) |
26 | 25 | sqxpeqd 5612 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥))) = ((Base‘(ℂfld
↾s 𝐴))
× (Base‘(ℂfld ↾s 𝐴)))) |
27 | 24, 26 | reseq12d 5881 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) = ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴))))) |
28 | 25 | fveq2d 6760 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Met‘(Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥))) =
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
29 | 21, 27, 28 | 3eltr4d 2854 |
. . 3
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) |
30 | | totbndbnd 35874 |
. . . . . 6
⊢
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) |
31 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s 𝐴) = (ℂfld
↾s 𝐴) |
32 | | cnfldbas 20514 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘ℂfld) |
33 | 31, 32 | ressbas2 16875 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℂ → 𝐴 =
(Base‘(ℂfld ↾s 𝐴))) |
34 | 33 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → 𝐴 = (Base‘(ℂfld
↾s 𝐴))) |
35 | 34 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Met‘𝐴) =
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
36 | 21, 35 | eleqtrrd 2842 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴)) |
37 | | eqid 2738 |
. . . . . . . . 9
⊢
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) |
38 | 37 | bnd2lem 35876 |
. . . . . . . 8
⊢
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦 ⊆ 𝐴) |
39 | 38 | ex 412 |
. . . . . . 7
⊢
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
40 | 36, 39 | syl 17 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
41 | 30, 40 | syl5 34 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
42 | | eqid 2738 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)) |
43 | 42 | cntotbnd 35881 |
. . . . . . . 8
⊢ (((abs
∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − )
↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
45 | 34 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (𝑦 ⊆ 𝐴 ↔ 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴)))) |
46 | 45 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴))) |
47 | | xpss12 5595 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆
(Base‘(ℂfld ↾s 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴)))
→ (𝑦 × 𝑦) ⊆
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) |
48 | 46, 46, 47 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂfld
↾s 𝐴))
× (Base‘(ℂfld ↾s 𝐴)))) |
49 | 48 | resabs1d 5911 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂfld
↾s 𝐴))
↾ (𝑦 × 𝑦))) |
50 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → 𝐴 ∈ V) |
51 | | cnfldds 20520 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) = (dist‘ℂfld) |
52 | 31, 51 | ressds 17039 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (abs ∘
− ) = (dist‘(ℂfld ↾s 𝐴))) |
53 | 50, 52 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (abs ∘ − ) =
(dist‘(ℂfld ↾s 𝐴))) |
54 | 53 | reseq1d 5879 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → ((abs ∘ − ) ↾
(𝑦 × 𝑦)) =
((dist‘(ℂfld ↾s 𝐴)) ↾ (𝑦 × 𝑦))) |
55 | 49, 54 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))) |
56 | 55 | eleq1d 2823 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (TotBnd‘𝑦))) |
57 | 55 | eleq1d 2823 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
58 | 44, 56, 57 | 3bitr4d 310 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
59 | 58 | ex 412 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (𝑦 ⊆ 𝐴 →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))) |
60 | 41, 40, 59 | pm5.21ndd 380 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
61 | 27 | reseq1d 5879 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦))) |
62 | 61 | eleq1d 2823 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦))) |
63 | 61 | eleq1d 2823 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
64 | 60, 62, 63 | 3bitr4d 310 |
. . 3
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
65 | 1, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64 | prdsbnd2 35880 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋))) |
66 | | cnpwstotbnd.d |
. . . 4
⊢ 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋)) |
67 | | cnpwstotbnd.y |
. . . . . . . 8
⊢ 𝑌 = ((ℂfld
↾s 𝐴)
↑s 𝐼) |
68 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘(ℂfld ↾s 𝐴)) =
(Scalar‘(ℂfld ↾s 𝐴)) |
69 | 67, 68 | pwsval 17114 |
. . . . . . 7
⊢
(((ℂfld ↾s 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂfld
↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
70 | 8, 7, 69 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 =
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
71 | 70 | fveq2d 6760 |
. . . . 5
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(dist‘𝑌) =
(dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))) |
72 | 71 | reseq1d 5879 |
. . . 4
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
((dist‘𝑌) ↾
(𝑋 × 𝑋)) =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋))) |
73 | 66, 72 | syl5eq 2791 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋))) |
74 | 73 | eleq1d 2823 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋))) |
75 | 73 | eleq1d 2823 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋))) |
76 | 65, 74, 75 | 3bitr4d 310 |
1
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))) |