Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Visualization version   GIF version

Theorem cnpwstotbnd 37784
Description: A subset of 𝐴𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
cnpwstotbnd.d 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cnpwstotbnd ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))

Proof of Theorem cnpwstotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})) = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))
2 eqid 2729 . . 3 (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
3 eqid 2729 . . 3 (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))
4 eqid 2729 . . 3 ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
5 eqid 2729 . . 3 (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
6 fvexd 6855 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (Scalar‘(ℂflds 𝐴)) ∈ V)
7 simpr 484 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
8 ovex 7402 . . . 4 (ℂflds 𝐴) ∈ V
9 fnconstg 6730 . . . 4 ((ℂflds 𝐴) ∈ V → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
108, 9mp1i 13 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
11 eqid 2729 . . 3 ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋))
12 cnfldms 24696 . . . . . 6 fld ∈ MetSp
13 cnex 11125 . . . . . . . 8 ℂ ∈ V
1413ssex 5271 . . . . . . 7 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1514ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 ∈ V)
16 ressms 24447 . . . . . 6 ((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂflds 𝐴) ∈ MetSp)
1712, 15, 16sylancr 587 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (ℂflds 𝐴) ∈ MetSp)
18 eqid 2729 . . . . . 6 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
19 eqid 2729 . . . . . 6 ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2018, 19msmet 24378 . . . . 5 ((ℂflds 𝐴) ∈ MetSp → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
2117, 20syl 17 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
228fvconst2 7160 . . . . . . 7 (𝑥𝐼 → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2322adantl 481 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2423fveq2d 6844 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (dist‘(ℂflds 𝐴)))
2523fveq2d 6844 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘(ℂflds 𝐴)))
2625sqxpeqd 5663 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2724, 26reseq12d 5940 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))))
2825fveq2d 6844 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = (Met‘(Base‘(ℂflds 𝐴))))
2921, 27, 283eltr4d 2843 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
30 totbndbnd 37776 . . . . . 6 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
31 eqid 2729 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
32 cnfldbas 21300 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3331, 32ressbas2 17184 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 = (Base‘(ℂflds 𝐴)))
3433ad2antrr 726 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 = (Base‘(ℂflds 𝐴)))
3534fveq2d 6844 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘𝐴) = (Met‘(Base‘(ℂflds 𝐴))))
3621, 35eleqtrrd 2831 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴))
37 eqid 2729 . . . . . . . . 9 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦))
3837bnd2lem 37778 . . . . . . . 8 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦𝐴)
3938ex 412 . . . . . . 7 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4036, 39syl 17 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4130, 40syl5 34 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦𝐴))
42 eqid 2729 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))
4342cntotbnd 37783 . . . . . . . 8 (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
4443a1i 11 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
4534sseq2d 3976 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴𝑦 ⊆ (Base‘(ℂflds 𝐴))))
4645biimpa 476 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝑦 ⊆ (Base‘(ℂflds 𝐴)))
47 xpss12 5646 . . . . . . . . . . 11 ((𝑦 ⊆ (Base‘(ℂflds 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂflds 𝐴))) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4846, 46, 47syl2anc 584 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4948resabs1d 5968 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5015adantr 480 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝐴 ∈ V)
51 cnfldds 21308 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℂfld)
5231, 51ressds 17349 . . . . . . . . . . 11 (𝐴 ∈ V → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5350, 52syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5453reseq1d 5938 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5549, 54eqtr4d 2767 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)))
5655eleq1d 2813 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
5755eleq1d 2813 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5844, 56, 573bitr4d 311 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5958ex 412 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴 → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))))
6041, 40, 59pm5.21ndd 379 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6127reseq1d 5938 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)))
6261eleq1d 2813 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
6361eleq1d 2813 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6460, 62, 633bitr4d 311 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
651, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64prdsbnd2 37782 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
66 cnpwstotbnd.d . . . 4 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
67 cnpwstotbnd.y . . . . . . . 8 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
68 eqid 2729 . . . . . . . 8 (Scalar‘(ℂflds 𝐴)) = (Scalar‘(ℂflds 𝐴))
6967, 68pwsval 17425 . . . . . . 7 (((ℂflds 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
708, 7, 69sylancr 587 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
7170fveq2d 6844 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (dist‘𝑌) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))))
7271reseq1d 5938 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → ((dist‘𝑌) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7366, 72eqtrid 2776 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7473eleq1d 2813 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋)))
7573eleq1d 2813 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
7665, 74, 753bitr4d 311 1 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {csn 4585   × cxp 5629  cres 5633  ccom 5635   Fn wfn 6494  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cmin 11381  abscabs 15176  Basecbs 17155  s cress 17176  Scalarcsca 17199  distcds 17205  Xscprds 17384  s cpws 17385  Metcmet 21282  fldccnfld 21296  MetSpcms 24239  TotBndctotbnd 37753  Bndcbnd 37754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-gz 16877  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-topgen 17382  df-prds 17386  df-pws 17388  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-totbnd 37755  df-bnd 37766
This theorem is referenced by:  rrntotbnd  37823
  Copyright terms: Public domain W3C validator