Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Visualization version   GIF version

Theorem cnpwstotbnd 35955
Description: A subset of 𝐴𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
cnpwstotbnd.d 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cnpwstotbnd ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))

Proof of Theorem cnpwstotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})) = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))
2 eqid 2738 . . 3 (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
3 eqid 2738 . . 3 (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))
4 eqid 2738 . . 3 ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
5 eqid 2738 . . 3 (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
6 fvexd 6789 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (Scalar‘(ℂflds 𝐴)) ∈ V)
7 simpr 485 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
8 ovex 7308 . . . 4 (ℂflds 𝐴) ∈ V
9 fnconstg 6662 . . . 4 ((ℂflds 𝐴) ∈ V → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
108, 9mp1i 13 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
11 eqid 2738 . . 3 ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋))
12 cnfldms 23939 . . . . . 6 fld ∈ MetSp
13 cnex 10952 . . . . . . . 8 ℂ ∈ V
1413ssex 5245 . . . . . . 7 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1514ad2antrr 723 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 ∈ V)
16 ressms 23682 . . . . . 6 ((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂflds 𝐴) ∈ MetSp)
1712, 15, 16sylancr 587 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (ℂflds 𝐴) ∈ MetSp)
18 eqid 2738 . . . . . 6 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
19 eqid 2738 . . . . . 6 ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2018, 19msmet 23610 . . . . 5 ((ℂflds 𝐴) ∈ MetSp → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
2117, 20syl 17 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
228fvconst2 7079 . . . . . . 7 (𝑥𝐼 → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2322adantl 482 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2423fveq2d 6778 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (dist‘(ℂflds 𝐴)))
2523fveq2d 6778 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘(ℂflds 𝐴)))
2625sqxpeqd 5621 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2724, 26reseq12d 5892 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))))
2825fveq2d 6778 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = (Met‘(Base‘(ℂflds 𝐴))))
2921, 27, 283eltr4d 2854 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
30 totbndbnd 35947 . . . . . 6 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
31 eqid 2738 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
32 cnfldbas 20601 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3331, 32ressbas2 16949 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 = (Base‘(ℂflds 𝐴)))
3433ad2antrr 723 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 = (Base‘(ℂflds 𝐴)))
3534fveq2d 6778 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘𝐴) = (Met‘(Base‘(ℂflds 𝐴))))
3621, 35eleqtrrd 2842 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴))
37 eqid 2738 . . . . . . . . 9 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦))
3837bnd2lem 35949 . . . . . . . 8 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦𝐴)
3938ex 413 . . . . . . 7 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4036, 39syl 17 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4130, 40syl5 34 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦𝐴))
42 eqid 2738 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))
4342cntotbnd 35954 . . . . . . . 8 (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
4443a1i 11 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
4534sseq2d 3953 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴𝑦 ⊆ (Base‘(ℂflds 𝐴))))
4645biimpa 477 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝑦 ⊆ (Base‘(ℂflds 𝐴)))
47 xpss12 5604 . . . . . . . . . . 11 ((𝑦 ⊆ (Base‘(ℂflds 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂflds 𝐴))) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4846, 46, 47syl2anc 584 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4948resabs1d 5922 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5015adantr 481 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝐴 ∈ V)
51 cnfldds 20607 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℂfld)
5231, 51ressds 17120 . . . . . . . . . . 11 (𝐴 ∈ V → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5350, 52syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5453reseq1d 5890 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5549, 54eqtr4d 2781 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)))
5655eleq1d 2823 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
5755eleq1d 2823 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5844, 56, 573bitr4d 311 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5958ex 413 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴 → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))))
6041, 40, 59pm5.21ndd 381 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6127reseq1d 5890 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)))
6261eleq1d 2823 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
6361eleq1d 2823 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6460, 62, 633bitr4d 311 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
651, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64prdsbnd2 35953 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
66 cnpwstotbnd.d . . . 4 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
67 cnpwstotbnd.y . . . . . . . 8 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
68 eqid 2738 . . . . . . . 8 (Scalar‘(ℂflds 𝐴)) = (Scalar‘(ℂflds 𝐴))
6967, 68pwsval 17197 . . . . . . 7 (((ℂflds 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
708, 7, 69sylancr 587 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
7170fveq2d 6778 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (dist‘𝑌) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))))
7271reseq1d 5890 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → ((dist‘𝑌) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7366, 72eqtrid 2790 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7473eleq1d 2823 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋)))
7573eleq1d 2823 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
7665, 74, 753bitr4d 311 1 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  {csn 4561   × cxp 5587  cres 5591  ccom 5593   Fn wfn 6428  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cmin 11205  abscabs 14945  Basecbs 16912  s cress 16941  Scalarcsca 16965  distcds 16971  Xscprds 17156  s cpws 17157  Metcmet 20583  fldccnfld 20597  MetSpcms 23471  TotBndctotbnd 35924  Bndcbnd 35925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-gz 16631  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-topgen 17154  df-prds 17158  df-pws 17160  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-totbnd 35926  df-bnd 35937
This theorem is referenced by:  rrntotbnd  35994
  Copyright terms: Public domain W3C validator