Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Visualization version   GIF version

Theorem cnpwstotbnd 37791
Description: A subset of 𝐴𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
cnpwstotbnd.d 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cnpwstotbnd ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))

Proof of Theorem cnpwstotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})) = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))
2 eqid 2729 . . 3 (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (Base‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
3 eqid 2729 . . 3 (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))
4 eqid 2729 . . 3 ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
5 eqid 2729 . . 3 (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
6 fvexd 6873 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (Scalar‘(ℂflds 𝐴)) ∈ V)
7 simpr 484 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
8 ovex 7420 . . . 4 (ℂflds 𝐴) ∈ V
9 fnconstg 6748 . . . 4 ((ℂflds 𝐴) ∈ V → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
108, 9mp1i 13 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂflds 𝐴)}) Fn 𝐼)
11 eqid 2729 . . 3 ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋))
12 cnfldms 24663 . . . . . 6 fld ∈ MetSp
13 cnex 11149 . . . . . . . 8 ℂ ∈ V
1413ssex 5276 . . . . . . 7 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1514ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 ∈ V)
16 ressms 24414 . . . . . 6 ((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂflds 𝐴) ∈ MetSp)
1712, 15, 16sylancr 587 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (ℂflds 𝐴) ∈ MetSp)
18 eqid 2729 . . . . . 6 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
19 eqid 2729 . . . . . 6 ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2018, 19msmet 24345 . . . . 5 ((ℂflds 𝐴) ∈ MetSp → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
2117, 20syl 17 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘(Base‘(ℂflds 𝐴))))
228fvconst2 7178 . . . . . . 7 (𝑥𝐼 → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2322adantl 481 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((𝐼 × {(ℂflds 𝐴)})‘𝑥) = (ℂflds 𝐴))
2423fveq2d 6862 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (dist‘(ℂflds 𝐴)))
2523fveq2d 6862 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) = (Base‘(ℂflds 𝐴)))
2625sqxpeqd 5670 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
2724, 26reseq12d 5951 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) = ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))))
2825fveq2d 6862 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))) = (Met‘(Base‘(ℂflds 𝐴))))
2921, 27, 283eltr4d 2843 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥))))
30 totbndbnd 37783 . . . . . 6 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
31 eqid 2729 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
32 cnfldbas 21268 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3331, 32ressbas2 17208 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 = (Base‘(ℂflds 𝐴)))
3433ad2antrr 726 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → 𝐴 = (Base‘(ℂflds 𝐴)))
3534fveq2d 6862 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (Met‘𝐴) = (Met‘(Base‘(ℂflds 𝐴))))
3621, 35eleqtrrd 2831 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴))
37 eqid 2729 . . . . . . . . 9 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦))
3837bnd2lem 37785 . . . . . . . 8 ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦𝐴)
3938ex 412 . . . . . . 7 (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ∈ (Met‘𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4036, 39syl 17 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦𝐴))
4130, 40syl5 34 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦𝐴))
42 eqid 2729 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))
4342cntotbnd 37790 . . . . . . . 8 (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))
4443a1i 11 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
4534sseq2d 3979 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴𝑦 ⊆ (Base‘(ℂflds 𝐴))))
4645biimpa 476 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝑦 ⊆ (Base‘(ℂflds 𝐴)))
47 xpss12 5653 . . . . . . . . . . 11 ((𝑦 ⊆ (Base‘(ℂflds 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂflds 𝐴))) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4846, 46, 47syl2anc 584 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴))))
4948resabs1d 5979 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5015adantr 480 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → 𝐴 ∈ V)
51 cnfldds 21276 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℂfld)
5231, 51ressds 17373 . . . . . . . . . . 11 (𝐴 ∈ V → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5350, 52syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (abs ∘ − ) = (dist‘(ℂflds 𝐴)))
5453reseq1d 5949 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((abs ∘ − ) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂflds 𝐴)) ↾ (𝑦 × 𝑦)))
5549, 54eqtr4d 2767 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)))
5655eleq1d 2813 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
5755eleq1d 2813 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5844, 56, 573bitr4d 311 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) ∧ 𝑦𝐴) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
5958ex 412 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑦𝐴 → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))))
6041, 40, 59pm5.21ndd 379 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6127reseq1d 5949 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)))
6261eleq1d 2813 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦)))
6361eleq1d 2813 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂflds 𝐴)) ↾ ((Base‘(ℂflds 𝐴)) × (Base‘(ℂflds 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
6460, 62, 633bitr4d 311 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → ((((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂflds 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
651, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64prdsbnd2 37789 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
66 cnpwstotbnd.d . . . 4 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋))
67 cnpwstotbnd.y . . . . . . . 8 𝑌 = ((ℂflds 𝐴) ↑s 𝐼)
68 eqid 2729 . . . . . . . 8 (Scalar‘(ℂflds 𝐴)) = (Scalar‘(ℂflds 𝐴))
6967, 68pwsval 17449 . . . . . . 7 (((ℂflds 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
708, 7, 69sylancr 587 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)})))
7170fveq2d 6862 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (dist‘𝑌) = (dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))))
7271reseq1d 5949 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → ((dist‘𝑌) ↾ (𝑋 × 𝑋)) = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7366, 72eqtrid 2776 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 = ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)))
7473eleq1d 2813 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋)))
7573eleq1d 2813 . 2 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔ ((dist‘((Scalar‘(ℂflds 𝐴))Xs(𝐼 × {(ℂflds 𝐴)}))) ↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋)))
7665, 74, 753bitr4d 311 1 ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   × cxp 5636  cres 5640  ccom 5642   Fn wfn 6506  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cmin 11405  abscabs 15200  Basecbs 17179  s cress 17200  Scalarcsca 17223  distcds 17229  Xscprds 17408  s cpws 17409  Metcmet 21250  fldccnfld 21264  MetSpcms 24206  TotBndctotbnd 37760  Bndcbnd 37761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-topgen 17406  df-prds 17410  df-pws 17412  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-totbnd 37762  df-bnd 37773
This theorem is referenced by:  rrntotbnd  37830
  Copyright terms: Public domain W3C validator