MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiclbs Structured version   Visualization version   GIF version

Theorem lmiclbs 21875
Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmiclbs (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))

Proof of Theorem lmiclbs
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 21085 . . 3 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
2 n0 4359 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
31, 2bitri 275 . 2 (𝑆𝑚 𝑇 ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
4 n0 4359 . . . 4 (𝐽 ≠ ∅ ↔ ∃𝑏 𝑏𝐽)
5 lmimlbs.j . . . . . . . 8 𝐽 = (LBasis‘𝑆)
6 lmimlbs.k . . . . . . . 8 𝐾 = (LBasis‘𝑇)
75, 6lmimlbs 21874 . . . . . . 7 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → (𝑓𝑏) ∈ 𝐾)
87ne0d 4348 . . . . . 6 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → 𝐾 ≠ ∅)
98ex 412 . . . . 5 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑏𝐽𝐾 ≠ ∅))
109exlimdv 1931 . . . 4 (𝑓 ∈ (𝑆 LMIso 𝑇) → (∃𝑏 𝑏𝐽𝐾 ≠ ∅))
114, 10biimtrid 242 . . 3 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
1211exlimiv 1928 . 2 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
133, 12sylbi 217 1 (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  c0 4339   class class class wbr 5148  cima 5692  cfv 6563  (class class class)co 7431   LMIso clmim 21037  𝑚 clmic 21038  LBasisclbs 21091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lmim 21040  df-lmic 21041  df-lbs 21092  df-lindf 21844  df-linds 21845
This theorem is referenced by:  lmisfree  21880
  Copyright terms: Public domain W3C validator