MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiclbs Structured version   Visualization version   GIF version

Theorem lmiclbs 20656
Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmiclbs (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))

Proof of Theorem lmiclbs
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 19962 . . 3 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
2 n0 4236 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
31, 2bitri 278 . 2 (𝑆𝑚 𝑇 ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
4 n0 4236 . . . 4 (𝐽 ≠ ∅ ↔ ∃𝑏 𝑏𝐽)
5 lmimlbs.j . . . . . . . 8 𝐽 = (LBasis‘𝑆)
6 lmimlbs.k . . . . . . . 8 𝐾 = (LBasis‘𝑇)
75, 6lmimlbs 20655 . . . . . . 7 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → (𝑓𝑏) ∈ 𝐾)
87ne0d 4225 . . . . . 6 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → 𝐾 ≠ ∅)
98ex 416 . . . . 5 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑏𝐽𝐾 ≠ ∅))
109exlimdv 1940 . . . 4 (𝑓 ∈ (𝑆 LMIso 𝑇) → (∃𝑏 𝑏𝐽𝐾 ≠ ∅))
114, 10syl5bi 245 . . 3 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
1211exlimiv 1937 . 2 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
133, 12sylbi 220 1 (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2114  wne 2935  c0 4212   class class class wbr 5031  cima 5529  cfv 6340  (class class class)co 7173   LMIso clmim 19914  𝑚 clmic 19915  LBasisclbs 19968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-2 11782  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-0g 16821  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-grp 18225  df-minusg 18226  df-sbg 18227  df-subg 18397  df-ghm 18477  df-mgp 19362  df-ur 19374  df-ring 19421  df-lmod 19758  df-lss 19826  df-lsp 19866  df-lmhm 19916  df-lmim 19917  df-lmic 19918  df-lbs 19969  df-lindf 20625  df-linds 20626
This theorem is referenced by:  lmisfree  20661
  Copyright terms: Public domain W3C validator