Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmiclbs | Structured version Visualization version GIF version |
Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmimlbs.j | ⊢ 𝐽 = (LBasis‘𝑆) |
lmimlbs.k | ⊢ 𝐾 = (LBasis‘𝑇) |
Ref | Expression |
---|---|
lmiclbs | ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20330 | . . 3 ⊢ (𝑆 ≃𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅) | |
2 | n0 4280 | . . 3 ⊢ ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑆 ≃𝑚 𝑇 ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) |
4 | n0 4280 | . . . 4 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑏 𝑏 ∈ 𝐽) | |
5 | lmimlbs.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑆) | |
6 | lmimlbs.k | . . . . . . . 8 ⊢ 𝐾 = (LBasis‘𝑇) | |
7 | 5, 6 | lmimlbs 21043 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ 𝐽) → (𝑓 “ 𝑏) ∈ 𝐾) |
8 | 7 | ne0d 4269 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ 𝐽) → 𝐾 ≠ ∅) |
9 | 8 | ex 413 | . . . . 5 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑏 ∈ 𝐽 → 𝐾 ≠ ∅)) |
10 | 9 | exlimdv 1936 | . . . 4 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (∃𝑏 𝑏 ∈ 𝐽 → 𝐾 ≠ ∅)) |
11 | 4, 10 | syl5bi 241 | . . 3 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) |
12 | 11 | exlimiv 1933 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) |
13 | 3, 12 | sylbi 216 | 1 ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 class class class wbr 5074 “ cima 5592 ‘cfv 6433 (class class class)co 7275 LMIso clmim 20282 ≃𝑚 clmic 20283 LBasisclbs 20336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lmhm 20284 df-lmim 20285 df-lmic 20286 df-lbs 20337 df-lindf 21013 df-linds 21014 |
This theorem is referenced by: lmisfree 21049 |
Copyright terms: Public domain | W3C validator |