MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmictra Structured version   Visualization version   GIF version

Theorem lmictra 20534
Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmictra ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)

Proof of Theorem lmictra
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 19833 . 2 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 brlmic 19833 . 2 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
3 n0 4260 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆))
4 n0 4260 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
5 lmimco 20533 . . . . . . . . 9 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓𝑔) ∈ (𝑅 LMIso 𝑇))
6 brlmici 19834 . . . . . . . . 9 ((𝑓𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅𝑚 𝑇)
75, 6syl 17 . . . . . . . 8 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅𝑚 𝑇)
87ex 416 . . . . . . 7 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
98exlimiv 1931 . . . . . 6 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
109com12 32 . . . . 5 (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1110exlimiv 1931 . . . 4 (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1211imp 410 . . 3 ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅𝑚 𝑇)
133, 4, 12syl2anb 600 . 2 (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅𝑚 𝑇)
141, 2, 13syl2anb 600 1 ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wex 1781  wcel 2111  wne 2987  c0 4243   class class class wbr 5030  ccom 5523  (class class class)co 7135   LMIso clmim 19785  𝑚 clmic 19786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-1o 8085  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-lmod 19629  df-lmhm 19787  df-lmim 19788  df-lmic 19789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator