![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmictra | Structured version Visualization version GIF version |
Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
lmictra | ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20671 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | brlmic 20671 | . 2 ⊢ (𝑆 ≃𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅) | |
3 | n0 4345 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆)) | |
4 | n0 4345 | . . 3 ⊢ ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
5 | lmimco 21390 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇)) | |
6 | brlmici 20672 | . . . . . . . . 9 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅 ≃𝑚 𝑇) |
8 | 7 | ex 413 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
9 | 8 | exlimiv 1933 | . . . . . 6 ⊢ (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
10 | 9 | com12 32 | . . . . 5 ⊢ (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
11 | 10 | exlimiv 1933 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
12 | 11 | imp 407 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅 ≃𝑚 𝑇) |
13 | 3, 4, 12 | syl2anb 598 | . 2 ⊢ (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅 ≃𝑚 𝑇) |
14 | 1, 2, 13 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 ∘ ccom 5679 (class class class)co 7405 LMIso clmim 20623 ≃𝑚 clmic 20624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-1o 8462 df-map 8818 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-ghm 19084 df-lmod 20465 df-lmhm 20625 df-lmim 20626 df-lmic 20627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |