| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmictra | Structured version Visualization version GIF version | ||
| Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| lmictra | ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic 21006 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
| 2 | brlmic 21006 | . 2 ⊢ (𝑆 ≃𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅) | |
| 3 | n0 4302 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆)) | |
| 4 | n0 4302 | . . 3 ⊢ ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
| 5 | lmimco 21785 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇)) | |
| 6 | brlmici 21007 | . . . . . . . . 9 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅 ≃𝑚 𝑇) |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
| 9 | 8 | exlimiv 1931 | . . . . . 6 ⊢ (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
| 10 | 9 | com12 32 | . . . . 5 ⊢ (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
| 11 | 10 | exlimiv 1931 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
| 12 | 11 | imp 406 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅 ≃𝑚 𝑇) |
| 13 | 3, 4, 12 | syl2anb 598 | . 2 ⊢ (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅 ≃𝑚 𝑇) |
| 14 | 1, 2, 13 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 class class class wbr 5095 ∘ ccom 5625 (class class class)co 7354 LMIso clmim 20958 ≃𝑚 clmic 20959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-1o 8393 df-map 8760 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-grp 18853 df-ghm 19129 df-lmod 20799 df-lmhm 20960 df-lmim 20961 df-lmic 20962 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |