| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmictra | Structured version Visualization version GIF version | ||
| Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| lmictra | ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic 21003 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
| 2 | brlmic 21003 | . 2 ⊢ (𝑆 ≃𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅) | |
| 3 | n0 4303 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆)) | |
| 4 | n0 4303 | . . 3 ⊢ ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
| 5 | lmimco 21782 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇)) | |
| 6 | brlmici 21004 | . . . . . . . . 9 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅 ≃𝑚 𝑇) |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
| 9 | 8 | exlimiv 1931 | . . . . . 6 ⊢ (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑇)) |
| 10 | 9 | com12 32 | . . . . 5 ⊢ (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
| 11 | 10 | exlimiv 1931 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅 ≃𝑚 𝑇)) |
| 12 | 11 | imp 406 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅 ≃𝑚 𝑇) |
| 13 | 3, 4, 12 | syl2anb 598 | . 2 ⊢ (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅 ≃𝑚 𝑇) |
| 14 | 1, 2, 13 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 class class class wbr 5091 ∘ ccom 5620 (class class class)co 7346 LMIso clmim 20955 ≃𝑚 clmic 20956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19126 df-lmod 20796 df-lmhm 20957 df-lmim 20958 df-lmic 20959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |