MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmictra Structured version   Visualization version   GIF version

Theorem lmictra 21786
Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmictra ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)

Proof of Theorem lmictra
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 21006 . 2 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 brlmic 21006 . 2 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
3 n0 4302 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆))
4 n0 4302 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
5 lmimco 21785 . . . . . . . . 9 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓𝑔) ∈ (𝑅 LMIso 𝑇))
6 brlmici 21007 . . . . . . . . 9 ((𝑓𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅𝑚 𝑇)
75, 6syl 17 . . . . . . . 8 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅𝑚 𝑇)
87ex 412 . . . . . . 7 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
98exlimiv 1931 . . . . . 6 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
109com12 32 . . . . 5 (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1110exlimiv 1931 . . . 4 (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1211imp 406 . . 3 ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅𝑚 𝑇)
133, 4, 12syl2anb 598 . 2 (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅𝑚 𝑇)
141, 2, 13syl2anb 598 1 ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5095  ccom 5625  (class class class)co 7354   LMIso clmim 20958  𝑚 clmic 20959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-1o 8393  df-map 8760  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-grp 18853  df-ghm 19129  df-lmod 20799  df-lmhm 20960  df-lmim 20961  df-lmic 20962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator