MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmictra Structured version   Visualization version   GIF version

Theorem lmictra 21267
Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmictra ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)

Proof of Theorem lmictra
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 20544 . 2 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 brlmic 20544 . 2 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
3 n0 4307 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆))
4 n0 4307 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
5 lmimco 21266 . . . . . . . . 9 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → (𝑓𝑔) ∈ (𝑅 LMIso 𝑇))
6 brlmici 20545 . . . . . . . . 9 ((𝑓𝑔) ∈ (𝑅 LMIso 𝑇) → 𝑅𝑚 𝑇)
75, 6syl 17 . . . . . . . 8 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑔 ∈ (𝑅 LMIso 𝑆)) → 𝑅𝑚 𝑇)
87ex 414 . . . . . . 7 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
98exlimiv 1934 . . . . . 6 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑔 ∈ (𝑅 LMIso 𝑆) → 𝑅𝑚 𝑇))
109com12 32 . . . . 5 (𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1110exlimiv 1934 . . . 4 (∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) → (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → 𝑅𝑚 𝑇))
1211imp 408 . . 3 ((∃𝑔 𝑔 ∈ (𝑅 LMIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑅𝑚 𝑇)
133, 4, 12syl2anb 599 . 2 (((𝑅 LMIso 𝑆) ≠ ∅ ∧ (𝑆 LMIso 𝑇) ≠ ∅) → 𝑅𝑚 𝑇)
141, 2, 13syl2anb 599 1 ((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wne 2940  c0 4283   class class class wbr 5106  ccom 5638  (class class class)co 7358   LMIso clmim 20496  𝑚 clmic 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-1o 8413  df-map 8770  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-mhm 18606  df-grp 18756  df-ghm 19011  df-lmod 20338  df-lmhm 20498  df-lmim 20499  df-lmic 20500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator