![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmicdim | Structured version Visualization version GIF version |
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Mar-2025.) |
Ref | Expression |
---|---|
lmicdim.1 | ⊢ (𝜑 → 𝑆 ≃𝑚 𝑇) |
lmicdim.2 | ⊢ (𝜑 → 𝑆 ∈ LVec) |
Ref | Expression |
---|---|
lmicdim | ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmicdim.1 | . . . 4 ⊢ (𝜑 → 𝑆 ≃𝑚 𝑇) | |
2 | brlmic 20827 | . . . 4 ⊢ (𝑆 ≃𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → (𝑆 LMIso 𝑇) ≠ ∅) |
4 | n0 4346 | . . 3 ⊢ ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇)) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑓 ∈ (𝑆 LMIso 𝑇)) | |
7 | lmicdim.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ LVec) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 LMIso 𝑇)) → 𝑆 ∈ LVec) |
9 | 6, 8 | lmimdim 32991 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 LMIso 𝑇)) → (dim‘𝑆) = (dim‘𝑇)) |
10 | 5, 9 | exlimddv 1937 | 1 ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 LMIso clmim 20779 ≃𝑚 clmic 20780 LVecclvec 20861 dimcldim 32986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 ax-ac2 10464 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rpss 7717 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-oi 9511 df-r1 9765 df-rank 9766 df-dju 9902 df-card 9940 df-acn 9943 df-ac 10117 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-xnn0 12552 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-tset 17223 df-ple 17224 df-ocomp 17225 df-0g 17394 df-mre 17537 df-mrc 17538 df-mri 17539 df-acs 17540 df-proset 18255 df-drs 18256 df-poset 18273 df-ipo 18488 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-ghm 19132 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-drng 20506 df-lmod 20620 df-lss 20691 df-lsp 20731 df-lmhm 20781 df-lmim 20782 df-lmic 20783 df-lbs 20834 df-lvec 20862 df-lindf 21584 df-linds 21585 df-dim 32987 |
This theorem is referenced by: algextdeglem6 33082 |
Copyright terms: Public domain | W3C validator |