Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval2 Structured version   Visualization version   GIF version

Theorem offval2 7409
 Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1 (𝜑𝐴𝑉)
offval2.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
offval2.3 ((𝜑𝑥𝐴) → 𝐶𝑋)
offval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
offval2.5 (𝜑𝐺 = (𝑥𝐴𝐶))
Assertion
Ref Expression
offval2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem offval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑊)
21ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
3 eqid 2798 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6461 . . . . 5 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 offval2.4 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6417 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 260 . . 3 (𝜑𝐹 Fn 𝐴)
9 offval2.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝑋)
109ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝑋)
11 eqid 2798 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1211fnmpt 6461 . . . . 5 (∀𝑥𝐴 𝐶𝑋 → (𝑥𝐴𝐶) Fn 𝐴)
1310, 12syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
14 offval2.5 . . . . 5 (𝜑𝐺 = (𝑥𝐴𝐶))
1514fneq1d 6417 . . . 4 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
1613, 15mpbird 260 . . 3 (𝜑𝐺 Fn 𝐴)
17 offval2.1 . . 3 (𝜑𝐴𝑉)
18 inidm 4145 . . 3 (𝐴𝐴) = 𝐴
196adantr 484 . . . 4 ((𝜑𝑦𝐴) → 𝐹 = (𝑥𝐴𝐵))
2019fveq1d 6648 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) = ((𝑥𝐴𝐵)‘𝑦))
2114adantr 484 . . . 4 ((𝜑𝑦𝐴) → 𝐺 = (𝑥𝐴𝐶))
2221fveq1d 6648 . . 3 ((𝜑𝑦𝐴) → (𝐺𝑦) = ((𝑥𝐴𝐶)‘𝑦))
238, 16, 17, 17, 18, 20, 22offval 7398 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))))
24 nffvmpt1 6657 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦)
25 nfcv 2955 . . . . 5 𝑥𝑅
26 nffvmpt1 6657 . . . . 5 𝑥((𝑥𝐴𝐶)‘𝑦)
2724, 25, 26nfov 7166 . . . 4 𝑥(((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))
28 nfcv 2955 . . . 4 𝑦(((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))
29 fveq2 6646 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
30 fveq2 6646 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐶)‘𝑦) = ((𝑥𝐴𝐶)‘𝑥))
3129, 30oveq12d 7154 . . . 4 (𝑦 = 𝑥 → (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)) = (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
3227, 28, 31cbvmpt 5132 . . 3 (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))) = (𝑥𝐴 ↦ (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
33 simpr 488 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
343fvmpt2 6757 . . . . . 6 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3533, 1, 34syl2anc 587 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3611fvmpt2 6757 . . . . . 6 ((𝑥𝐴𝐶𝑋) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3733, 9, 36syl2anc 587 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3835, 37oveq12d 7154 . . . 4 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)) = (𝐵𝑅𝐶))
3938mpteq2dva 5126 . . 3 (𝜑 → (𝑥𝐴 ↦ (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
4032, 39syl5eq 2845 . 2 (𝜑 → (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
4123, 40eqtrd 2833 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))