MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caonncan Structured version   Visualization version   GIF version

Theorem caonncan 7700
Description: Transfer nncan 11458-shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
caonncan.i (𝜑𝐼𝑉)
caonncan.a (𝜑𝐴:𝐼𝑆)
caonncan.b (𝜑𝐵:𝐼𝑆)
caonncan.z ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
Assertion
Ref Expression
caonncan (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caonncan
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 caonncan.a . . . . 5 (𝜑𝐴:𝐼𝑆)
21ffvelcdmda 7059 . . . 4 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ 𝑆)
3 caonncan.b . . . . 5 (𝜑𝐵:𝐼𝑆)
43ffvelcdmda 7059 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ 𝑆)
5 caonncan.z . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
65ralrimivva 3181 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
76adantr 480 . . . 4 ((𝜑𝑧𝐼) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
8 id 22 . . . . . . 7 (𝑥 = (𝐴𝑧) → 𝑥 = (𝐴𝑧))
9 oveq1 7397 . . . . . . 7 (𝑥 = (𝐴𝑧) → (𝑥𝑀𝑦) = ((𝐴𝑧)𝑀𝑦))
108, 9oveq12d 7408 . . . . . 6 (𝑥 = (𝐴𝑧) → (𝑥𝑀(𝑥𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)))
1110eqeq1d 2732 . . . . 5 (𝑥 = (𝐴𝑧) → ((𝑥𝑀(𝑥𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦))
12 oveq2 7398 . . . . . . 7 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀𝑦) = ((𝐴𝑧)𝑀(𝐵𝑧)))
1312oveq2d 7406 . . . . . 6 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))))
14 id 22 . . . . . 6 (𝑦 = (𝐵𝑧) → 𝑦 = (𝐵𝑧))
1513, 14eqeq12d 2746 . . . . 5 (𝑦 = (𝐵𝑧) → (((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧)))
1611, 15rspc2va 3603 . . . 4 ((((𝐴𝑧) ∈ 𝑆 ∧ (𝐵𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
172, 4, 7, 16syl21anc 837 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
1817mpteq2dva 5203 . 2 (𝜑 → (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))) = (𝑧𝐼 ↦ (𝐵𝑧)))
19 caonncan.i . . 3 (𝜑𝐼𝑉)
20 fvexd 6876 . . 3 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ V)
21 ovexd 7425 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀(𝐵𝑧)) ∈ V)
221feqmptd 6932 . . 3 (𝜑𝐴 = (𝑧𝐼 ↦ (𝐴𝑧)))
23 fvexd 6876 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ V)
243feqmptd 6932 . . . 4 (𝜑𝐵 = (𝑧𝐼 ↦ (𝐵𝑧)))
2519, 20, 23, 22, 24offval2 7676 . . 3 (𝜑 → (𝐴f 𝑀𝐵) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀(𝐵𝑧))))
2619, 20, 21, 22, 25offval2 7676 . 2 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))))
2718, 26, 243eqtr4d 2775 1 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by:  psropprmul  22129
  Copyright terms: Public domain W3C validator