MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caonncan Structured version   Visualization version   GIF version

Theorem caonncan 7756
Description: Transfer nncan 11565-shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
caonncan.i (𝜑𝐼𝑉)
caonncan.a (𝜑𝐴:𝐼𝑆)
caonncan.b (𝜑𝐵:𝐼𝑆)
caonncan.z ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
Assertion
Ref Expression
caonncan (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caonncan
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 caonncan.a . . . . 5 (𝜑𝐴:𝐼𝑆)
21ffvelcdmda 7118 . . . 4 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ 𝑆)
3 caonncan.b . . . . 5 (𝜑𝐵:𝐼𝑆)
43ffvelcdmda 7118 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ 𝑆)
5 caonncan.z . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
65ralrimivva 3208 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
76adantr 480 . . . 4 ((𝜑𝑧𝐼) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
8 id 22 . . . . . . 7 (𝑥 = (𝐴𝑧) → 𝑥 = (𝐴𝑧))
9 oveq1 7455 . . . . . . 7 (𝑥 = (𝐴𝑧) → (𝑥𝑀𝑦) = ((𝐴𝑧)𝑀𝑦))
108, 9oveq12d 7466 . . . . . 6 (𝑥 = (𝐴𝑧) → (𝑥𝑀(𝑥𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)))
1110eqeq1d 2742 . . . . 5 (𝑥 = (𝐴𝑧) → ((𝑥𝑀(𝑥𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦))
12 oveq2 7456 . . . . . . 7 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀𝑦) = ((𝐴𝑧)𝑀(𝐵𝑧)))
1312oveq2d 7464 . . . . . 6 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))))
14 id 22 . . . . . 6 (𝑦 = (𝐵𝑧) → 𝑦 = (𝐵𝑧))
1513, 14eqeq12d 2756 . . . . 5 (𝑦 = (𝐵𝑧) → (((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧)))
1611, 15rspc2va 3647 . . . 4 ((((𝐴𝑧) ∈ 𝑆 ∧ (𝐵𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
172, 4, 7, 16syl21anc 837 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
1817mpteq2dva 5266 . 2 (𝜑 → (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))) = (𝑧𝐼 ↦ (𝐵𝑧)))
19 caonncan.i . . 3 (𝜑𝐼𝑉)
20 fvexd 6935 . . 3 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ V)
21 ovexd 7483 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀(𝐵𝑧)) ∈ V)
221feqmptd 6990 . . 3 (𝜑𝐴 = (𝑧𝐼 ↦ (𝐴𝑧)))
23 fvexd 6935 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ V)
243feqmptd 6990 . . . 4 (𝜑𝐵 = (𝑧𝐼 ↦ (𝐵𝑧)))
2519, 20, 23, 22, 24offval2 7734 . . 3 (𝜑 → (𝐴f 𝑀𝐵) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀(𝐵𝑧))))
2619, 20, 21, 22, 25offval2 7734 . 2 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))))
2718, 26, 243eqtr4d 2790 1 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  psropprmul  22260
  Copyright terms: Public domain W3C validator