MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caonncan Structured version   Visualization version   GIF version

Theorem caonncan 7663
Description: Transfer nncan 11401-shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
caonncan.i (𝜑𝐼𝑉)
caonncan.a (𝜑𝐴:𝐼𝑆)
caonncan.b (𝜑𝐵:𝐼𝑆)
caonncan.z ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
Assertion
Ref Expression
caonncan (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caonncan
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 caonncan.a . . . . 5 (𝜑𝐴:𝐼𝑆)
21ffvelcdmda 7026 . . . 4 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ 𝑆)
3 caonncan.b . . . . 5 (𝜑𝐵:𝐼𝑆)
43ffvelcdmda 7026 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ 𝑆)
5 caonncan.z . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
65ralrimivva 3176 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
76adantr 480 . . . 4 ((𝜑𝑧𝐼) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
8 id 22 . . . . . . 7 (𝑥 = (𝐴𝑧) → 𝑥 = (𝐴𝑧))
9 oveq1 7362 . . . . . . 7 (𝑥 = (𝐴𝑧) → (𝑥𝑀𝑦) = ((𝐴𝑧)𝑀𝑦))
108, 9oveq12d 7373 . . . . . 6 (𝑥 = (𝐴𝑧) → (𝑥𝑀(𝑥𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)))
1110eqeq1d 2735 . . . . 5 (𝑥 = (𝐴𝑧) → ((𝑥𝑀(𝑥𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦))
12 oveq2 7363 . . . . . . 7 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀𝑦) = ((𝐴𝑧)𝑀(𝐵𝑧)))
1312oveq2d 7371 . . . . . 6 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))))
14 id 22 . . . . . 6 (𝑦 = (𝐵𝑧) → 𝑦 = (𝐵𝑧))
1513, 14eqeq12d 2749 . . . . 5 (𝑦 = (𝐵𝑧) → (((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧)))
1611, 15rspc2va 3585 . . . 4 ((((𝐴𝑧) ∈ 𝑆 ∧ (𝐵𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
172, 4, 7, 16syl21anc 837 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
1817mpteq2dva 5188 . 2 (𝜑 → (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))) = (𝑧𝐼 ↦ (𝐵𝑧)))
19 caonncan.i . . 3 (𝜑𝐼𝑉)
20 fvexd 6846 . . 3 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ V)
21 ovexd 7390 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀(𝐵𝑧)) ∈ V)
221feqmptd 6899 . . 3 (𝜑𝐴 = (𝑧𝐼 ↦ (𝐴𝑧)))
23 fvexd 6846 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ V)
243feqmptd 6899 . . . 4 (𝜑𝐵 = (𝑧𝐼 ↦ (𝐵𝑧)))
2519, 20, 23, 22, 24offval2 7639 . . 3 (𝜑 → (𝐴f 𝑀𝐵) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀(𝐵𝑧))))
2619, 20, 21, 22, 25offval2 7639 . 2 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))))
2718, 26, 243eqtr4d 2778 1 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619
This theorem is referenced by:  psropprmul  22169
  Copyright terms: Public domain W3C validator