MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caonncan Structured version   Visualization version   GIF version

Theorem caonncan 7449
Description: Transfer nncan 10917-shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
caonncan.i (𝜑𝐼𝑉)
caonncan.a (𝜑𝐴:𝐼𝑆)
caonncan.b (𝜑𝐵:𝐼𝑆)
caonncan.z ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
Assertion
Ref Expression
caonncan (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caonncan
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 caonncan.a . . . . 5 (𝜑𝐴:𝐼𝑆)
21ffvelrnda 6853 . . . 4 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ 𝑆)
3 caonncan.b . . . . 5 (𝜑𝐵:𝐼𝑆)
43ffvelrnda 6853 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ 𝑆)
5 caonncan.z . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
65ralrimivva 3193 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
76adantr 483 . . . 4 ((𝜑𝑧𝐼) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦)
8 id 22 . . . . . . 7 (𝑥 = (𝐴𝑧) → 𝑥 = (𝐴𝑧))
9 oveq1 7165 . . . . . . 7 (𝑥 = (𝐴𝑧) → (𝑥𝑀𝑦) = ((𝐴𝑧)𝑀𝑦))
108, 9oveq12d 7176 . . . . . 6 (𝑥 = (𝐴𝑧) → (𝑥𝑀(𝑥𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)))
1110eqeq1d 2825 . . . . 5 (𝑥 = (𝐴𝑧) → ((𝑥𝑀(𝑥𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦))
12 oveq2 7166 . . . . . . 7 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀𝑦) = ((𝐴𝑧)𝑀(𝐵𝑧)))
1312oveq2d 7174 . . . . . 6 (𝑦 = (𝐵𝑧) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))))
14 id 22 . . . . . 6 (𝑦 = (𝐵𝑧) → 𝑦 = (𝐵𝑧))
1513, 14eqeq12d 2839 . . . . 5 (𝑦 = (𝐵𝑧) → (((𝐴𝑧)𝑀((𝐴𝑧)𝑀𝑦)) = 𝑦 ↔ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧)))
1611, 15rspc2va 3636 . . . 4 ((((𝐴𝑧) ∈ 𝑆 ∧ (𝐵𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
172, 4, 7, 16syl21anc 835 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧))) = (𝐵𝑧))
1817mpteq2dva 5163 . 2 (𝜑 → (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))) = (𝑧𝐼 ↦ (𝐵𝑧)))
19 caonncan.i . . 3 (𝜑𝐼𝑉)
20 fvexd 6687 . . 3 ((𝜑𝑧𝐼) → (𝐴𝑧) ∈ V)
21 ovexd 7193 . . 3 ((𝜑𝑧𝐼) → ((𝐴𝑧)𝑀(𝐵𝑧)) ∈ V)
221feqmptd 6735 . . 3 (𝜑𝐴 = (𝑧𝐼 ↦ (𝐴𝑧)))
23 fvexd 6687 . . . 4 ((𝜑𝑧𝐼) → (𝐵𝑧) ∈ V)
243feqmptd 6735 . . . 4 (𝜑𝐵 = (𝑧𝐼 ↦ (𝐵𝑧)))
2519, 20, 23, 22, 24offval2 7428 . . 3 (𝜑 → (𝐴f 𝑀𝐵) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀(𝐵𝑧))))
2619, 20, 21, 22, 25offval2 7428 . 2 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = (𝑧𝐼 ↦ ((𝐴𝑧)𝑀((𝐴𝑧)𝑀(𝐵𝑧)))))
2718, 26, 243eqtr4d 2868 1 (𝜑 → (𝐴f 𝑀(𝐴f 𝑀𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411
This theorem is referenced by:  psropprmul  20408
  Copyright terms: Public domain W3C validator