Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 34318
Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
elcarsg (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 34316 . . 3 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
43eleq2d 2817 . 2 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)}))
5 ineq2 4161 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
65fveq2d 6826 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
7 difeq2 4067 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
87fveq2d 6826 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
96, 8oveq12d 7364 . . . . . 6 (𝑎 = 𝐴 → ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
109eqeq1d 2733 . . . . 5 (𝑎 = 𝐴 → (((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1110ralbidv 3155 . . . 4 (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1211elrab 3642 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
13 elex 3457 . . . . . 6 (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V)
1413a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V))
151adantr 480 . . . . . . 7 ((𝜑𝐴𝑂) → 𝑂𝑉)
16 simpr 484 . . . . . . 7 ((𝜑𝐴𝑂) → 𝐴𝑂)
1715, 16ssexd 5260 . . . . . 6 ((𝜑𝐴𝑂) → 𝐴 ∈ V)
1817ex 412 . . . . 5 (𝜑 → (𝐴𝑂𝐴 ∈ V))
19 elpwg 4550 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2019a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂)))
2114, 18, 20pm5.21ndd 379 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2221anbi1d 631 . . 3 (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
2312, 22bitrid 283 . 2 (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
244, 23bitrd 279 1 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143   +𝑒 cxad 13009  [,]cicc 13248  toCaraSigaccarsg 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-carsg 34315
This theorem is referenced by:  baselcarsg  34319  0elcarsg  34320  difelcarsg  34323  inelcarsg  34324  carsgclctunlem1  34330  carsgclctunlem2  34332  carsgclctun  34334
  Copyright terms: Public domain W3C validator