Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 34303
Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
elcarsg (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 34301 . . 3 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
43eleq2d 2815 . 2 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)}))
5 ineq2 4180 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
65fveq2d 6865 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
7 difeq2 4086 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
87fveq2d 6865 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
96, 8oveq12d 7408 . . . . . 6 (𝑎 = 𝐴 → ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
109eqeq1d 2732 . . . . 5 (𝑎 = 𝐴 → (((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1110ralbidv 3157 . . . 4 (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1211elrab 3662 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
13 elex 3471 . . . . . 6 (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V)
1413a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V))
151adantr 480 . . . . . . 7 ((𝜑𝐴𝑂) → 𝑂𝑉)
16 simpr 484 . . . . . . 7 ((𝜑𝐴𝑂) → 𝐴𝑂)
1715, 16ssexd 5282 . . . . . 6 ((𝜑𝐴𝑂) → 𝐴 ∈ V)
1817ex 412 . . . . 5 (𝜑 → (𝐴𝑂𝐴 ∈ V))
19 elpwg 4569 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2019a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂)))
2114, 18, 20pm5.21ndd 379 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2221anbi1d 631 . . 3 (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
2312, 22bitrid 283 . 2 (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
244, 23bitrd 279 1 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212   +𝑒 cxad 13077  [,]cicc 13316  toCaraSigaccarsg 34299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-carsg 34300
This theorem is referenced by:  baselcarsg  34304  0elcarsg  34305  difelcarsg  34308  inelcarsg  34309  carsgclctunlem1  34315  carsgclctunlem2  34317  carsgclctun  34319
  Copyright terms: Public domain W3C validator