| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcarsg | Structured version Visualization version GIF version | ||
| Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| Ref | Expression |
|---|---|
| elcarsg | ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 3 | 1, 2 | carsgval 34288 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) |
| 4 | 3 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)})) |
| 5 | ineq2 4173 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑒 ∩ 𝑎) = (𝑒 ∩ 𝐴)) | |
| 6 | 5 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑀‘(𝑒 ∩ 𝑎)) = (𝑀‘(𝑒 ∩ 𝐴))) |
| 7 | difeq2 4079 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑒 ∖ 𝑎) = (𝑒 ∖ 𝐴)) | |
| 8 | 7 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑀‘(𝑒 ∖ 𝑎)) = (𝑀‘(𝑒 ∖ 𝐴))) |
| 9 | 6, 8 | oveq12d 7387 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = ((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴)))) |
| 10 | 9 | eqeq1d 2731 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒) ↔ ((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 11 | 10 | ralbidv 3156 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 12 | 11 | elrab 3656 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 13 | elex 3465 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝑂 → 𝐴 ∈ V) | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑂 → 𝐴 ∈ V)) |
| 15 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) |
| 16 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
| 17 | 15, 16 | ssexd 5274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝐴 ⊆ 𝑂 → 𝐴 ∈ V)) |
| 19 | elpwg 4562 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂)) | |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂))) |
| 21 | 14, 18, 20 | pm5.21ndd 379 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂)) |
| 22 | 21 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| 23 | 12, 22 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| 24 | 4, 23 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11046 +∞cpnf 11183 +𝑒 cxad 13048 [,]cicc 13287 toCaraSigaccarsg 34286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-carsg 34287 |
| This theorem is referenced by: baselcarsg 34291 0elcarsg 34292 difelcarsg 34295 inelcarsg 34296 carsgclctunlem1 34302 carsgclctunlem2 34304 carsgclctun 34306 |
| Copyright terms: Public domain | W3C validator |