Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 33292
Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (πœ‘ β†’ 𝑂 ∈ 𝑉)
carsgval.2 (πœ‘ β†’ 𝑀:𝒫 π‘‚βŸΆ(0[,]+∞))
Assertion
Ref Expression
elcarsg (πœ‘ β†’ (𝐴 ∈ (toCaraSigaβ€˜π‘€) ↔ (𝐴 βŠ† 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   πœ‘,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (πœ‘ β†’ 𝑂 ∈ 𝑉)
2 carsgval.2 . . . 4 (πœ‘ β†’ 𝑀:𝒫 π‘‚βŸΆ(0[,]+∞))
31, 2carsgval 33290 . . 3 (πœ‘ β†’ (toCaraSigaβ€˜π‘€) = {π‘Ž ∈ 𝒫 𝑂 ∣ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’)})
43eleq2d 2819 . 2 (πœ‘ β†’ (𝐴 ∈ (toCaraSigaβ€˜π‘€) ↔ 𝐴 ∈ {π‘Ž ∈ 𝒫 𝑂 ∣ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’)}))
5 ineq2 4205 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (𝑒 ∩ π‘Ž) = (𝑒 ∩ 𝐴))
65fveq2d 6892 . . . . . . 7 (π‘Ž = 𝐴 β†’ (π‘€β€˜(𝑒 ∩ π‘Ž)) = (π‘€β€˜(𝑒 ∩ 𝐴)))
7 difeq2 4115 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (𝑒 βˆ– π‘Ž) = (𝑒 βˆ– 𝐴))
87fveq2d 6892 . . . . . . 7 (π‘Ž = 𝐴 β†’ (π‘€β€˜(𝑒 βˆ– π‘Ž)) = (π‘€β€˜(𝑒 βˆ– 𝐴)))
96, 8oveq12d 7423 . . . . . 6 (π‘Ž = 𝐴 β†’ ((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = ((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))))
109eqeq1d 2734 . . . . 5 (π‘Ž = 𝐴 β†’ (((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’) ↔ ((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’)))
1110ralbidv 3177 . . . 4 (π‘Ž = 𝐴 β†’ (βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’) ↔ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’)))
1211elrab 3682 . . 3 (𝐴 ∈ {π‘Ž ∈ 𝒫 𝑂 ∣ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’)))
13 elex 3492 . . . . . 6 (𝐴 ∈ 𝒫 𝑂 β†’ 𝐴 ∈ V)
1413a1i 11 . . . . 5 (πœ‘ β†’ (𝐴 ∈ 𝒫 𝑂 β†’ 𝐴 ∈ V))
151adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝐴 βŠ† 𝑂) β†’ 𝑂 ∈ 𝑉)
16 simpr 485 . . . . . . 7 ((πœ‘ ∧ 𝐴 βŠ† 𝑂) β†’ 𝐴 βŠ† 𝑂)
1715, 16ssexd 5323 . . . . . 6 ((πœ‘ ∧ 𝐴 βŠ† 𝑂) β†’ 𝐴 ∈ V)
1817ex 413 . . . . 5 (πœ‘ β†’ (𝐴 βŠ† 𝑂 β†’ 𝐴 ∈ V))
19 elpwg 4604 . . . . . 6 (𝐴 ∈ V β†’ (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 βŠ† 𝑂))
2019a1i 11 . . . . 5 (πœ‘ β†’ (𝐴 ∈ V β†’ (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 βŠ† 𝑂)))
2114, 18, 20pm5.21ndd 380 . . . 4 (πœ‘ β†’ (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 βŠ† 𝑂))
2221anbi1d 630 . . 3 (πœ‘ β†’ ((𝐴 ∈ 𝒫 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’)) ↔ (𝐴 βŠ† 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’))))
2312, 22bitrid 282 . 2 (πœ‘ β†’ (𝐴 ∈ {π‘Ž ∈ 𝒫 𝑂 ∣ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘€β€˜(𝑒 βˆ– π‘Ž))) = (π‘€β€˜π‘’)} ↔ (𝐴 βŠ† 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’))))
244, 23bitrd 278 1 (πœ‘ β†’ (𝐴 ∈ (toCaraSigaβ€˜π‘€) ↔ (𝐴 βŠ† 𝑂 ∧ βˆ€π‘’ ∈ 𝒫 𝑂((π‘€β€˜(𝑒 ∩ 𝐴)) +𝑒 (π‘€β€˜(𝑒 βˆ– 𝐴))) = (π‘€β€˜π‘’))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  +∞cpnf 11241   +𝑒 cxad 13086  [,]cicc 13323  toCaraSigaccarsg 33288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-carsg 33289
This theorem is referenced by:  baselcarsg  33293  0elcarsg  33294  difelcarsg  33297  inelcarsg  33298  carsgclctunlem1  33304  carsgclctunlem2  33306  carsgclctun  33308
  Copyright terms: Public domain W3C validator