Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 34289
Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
elcarsg (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 34287 . . 3 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
43eleq2d 2814 . 2 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)}))
5 ineq2 4165 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
65fveq2d 6826 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
7 difeq2 4071 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
87fveq2d 6826 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
96, 8oveq12d 7367 . . . . . 6 (𝑎 = 𝐴 → ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
109eqeq1d 2731 . . . . 5 (𝑎 = 𝐴 → (((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1110ralbidv 3152 . . . 4 (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1211elrab 3648 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
13 elex 3457 . . . . . 6 (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V)
1413a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V))
151adantr 480 . . . . . . 7 ((𝜑𝐴𝑂) → 𝑂𝑉)
16 simpr 484 . . . . . . 7 ((𝜑𝐴𝑂) → 𝐴𝑂)
1715, 16ssexd 5263 . . . . . 6 ((𝜑𝐴𝑂) → 𝐴 ∈ V)
1817ex 412 . . . . 5 (𝜑 → (𝐴𝑂𝐴 ∈ V))
19 elpwg 4554 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2019a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂)))
2114, 18, 20pm5.21ndd 379 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2221anbi1d 631 . . 3 (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
2312, 22bitrid 283 . 2 (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
244, 23bitrd 279 1 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  𝒫 cpw 4551  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146   +𝑒 cxad 13012  [,]cicc 13251  toCaraSigaccarsg 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-carsg 34286
This theorem is referenced by:  baselcarsg  34290  0elcarsg  34291  difelcarsg  34294  inelcarsg  34295  carsgclctunlem1  34301  carsgclctunlem2  34303  carsgclctun  34305
  Copyright terms: Public domain W3C validator