| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcarsg | Structured version Visualization version GIF version | ||
| Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| Ref | Expression |
|---|---|
| elcarsg | ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 3 | 1, 2 | carsgval 34335 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) |
| 4 | 3 | eleq2d 2820 | . 2 ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)})) |
| 5 | ineq2 4189 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑒 ∩ 𝑎) = (𝑒 ∩ 𝐴)) | |
| 6 | 5 | fveq2d 6880 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑀‘(𝑒 ∩ 𝑎)) = (𝑀‘(𝑒 ∩ 𝐴))) |
| 7 | difeq2 4095 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑒 ∖ 𝑎) = (𝑒 ∖ 𝐴)) | |
| 8 | 7 | fveq2d 6880 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑀‘(𝑒 ∖ 𝑎)) = (𝑀‘(𝑒 ∖ 𝐴))) |
| 9 | 6, 8 | oveq12d 7423 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = ((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴)))) |
| 10 | 9 | eqeq1d 2737 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒) ↔ ((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 11 | 10 | ralbidv 3163 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 12 | 11 | elrab 3671 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒))) |
| 13 | elex 3480 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝑂 → 𝐴 ∈ V) | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑂 → 𝐴 ∈ V)) |
| 15 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) |
| 16 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
| 17 | 15, 16 | ssexd 5294 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝐴 ⊆ 𝑂 → 𝐴 ∈ V)) |
| 19 | elpwg 4578 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂)) | |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂))) |
| 21 | 14, 18, 20 | pm5.21ndd 379 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑂 ↔ 𝐴 ⊆ 𝑂)) |
| 22 | 21 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| 23 | 12, 22 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)} ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| 24 | 4, 23 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 +𝑒 cxad 13126 [,]cicc 13365 toCaraSigaccarsg 34333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-carsg 34334 |
| This theorem is referenced by: baselcarsg 34338 0elcarsg 34339 difelcarsg 34342 inelcarsg 34343 carsgclctunlem1 34349 carsgclctunlem2 34351 carsgclctun 34353 |
| Copyright terms: Public domain | W3C validator |