Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 34296
Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
elcarsg (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 34294 . . 3 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
43eleq2d 2814 . 2 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)}))
5 ineq2 4177 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
65fveq2d 6862 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
7 difeq2 4083 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
87fveq2d 6862 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
96, 8oveq12d 7405 . . . . . 6 (𝑎 = 𝐴 → ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
109eqeq1d 2731 . . . . 5 (𝑎 = 𝐴 → (((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1110ralbidv 3156 . . . 4 (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1211elrab 3659 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
13 elex 3468 . . . . . 6 (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V)
1413a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V))
151adantr 480 . . . . . . 7 ((𝜑𝐴𝑂) → 𝑂𝑉)
16 simpr 484 . . . . . . 7 ((𝜑𝐴𝑂) → 𝐴𝑂)
1715, 16ssexd 5279 . . . . . 6 ((𝜑𝐴𝑂) → 𝐴 ∈ V)
1817ex 412 . . . . 5 (𝜑 → (𝐴𝑂𝐴 ∈ V))
19 elpwg 4566 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2019a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂)))
2114, 18, 20pm5.21ndd 379 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2221anbi1d 631 . . 3 (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
2312, 22bitrid 283 . 2 (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
244, 23bitrd 279 1 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205   +𝑒 cxad 13070  [,]cicc 13309  toCaraSigaccarsg 34292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-carsg 34293
This theorem is referenced by:  baselcarsg  34297  0elcarsg  34298  difelcarsg  34301  inelcarsg  34302  carsgclctunlem1  34308  carsgclctunlem2  34310  carsgclctun  34312
  Copyright terms: Public domain W3C validator