Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgsiga | Structured version Visualization version GIF version |
Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
carsgsiga.3 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgsiga | ⊢ (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | 1, 2 | carsgcl 32377 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
4 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
5 | 1, 2, 4 | baselcarsg 32379 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
6 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
7 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
8 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑔 ∈ (toCaraSiga‘𝑀)) | |
9 | 6, 7, 8 | difelcarsg 32383 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → (𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀)) |
10 | 9 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀)) |
11 | 1 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑂 ∈ 𝑉) |
12 | 2 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
13 | 4 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → (𝑀‘∅) = 0) |
14 | carsgsiga.2 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
15 | 14 | 3adant1r 1176 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
16 | 15 | 3adant1r 1176 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
17 | carsgsiga.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) | |
18 | 17 | 3adant1r 1176 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
19 | 18 | 3adant1r 1176 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
20 | simpr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ≼ ω) | |
21 | elpwi 4552 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝒫 (toCaraSiga‘𝑀) → 𝑔 ⊆ (toCaraSiga‘𝑀)) | |
22 | 21 | ad2antlr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ⊆ (toCaraSiga‘𝑀)) |
23 | 11, 12, 13, 16, 19, 20, 22 | carsgclctun 32394 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)) |
24 | 23 | ex 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) → (𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))) |
25 | 24 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))) |
26 | 5, 10, 25 | 3jca 1127 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)))) |
27 | 3, 26 | jca 512 | . 2 ⊢ (𝜑 → ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))))) |
28 | fvex 6824 | . . 3 ⊢ (toCaraSiga‘𝑀) ∈ V | |
29 | issiga 32186 | . . 3 ⊢ ((toCaraSiga‘𝑀) ∈ V → ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)))))) | |
30 | 28, 29 | ax-mp 5 | . 2 ⊢ ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))))) |
31 | 27, 30 | sylibr 233 | 1 ⊢ (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 Vcvv 3441 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4267 𝒫 cpw 4545 ∪ cuni 4850 class class class wbr 5087 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ωcom 7757 ≼ cdom 8779 0cc0 10944 +∞cpnf 11079 ≤ cle 11083 [,]cicc 13155 Σ*cesum 32101 sigAlgebracsiga 32182 toCaraSigaccarsg 32374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-ac2 10292 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-disj 5053 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-fi 9240 df-sup 9271 df-inf 9272 df-oi 9339 df-dju 9730 df-card 9768 df-acn 9771 df-ac 9945 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-ioo 13156 df-ioc 13157 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-fl 13585 df-mod 13663 df-seq 13795 df-exp 13856 df-fac 14061 df-bc 14090 df-hash 14118 df-shft 14850 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-limsup 15252 df-clim 15269 df-rlim 15270 df-sum 15470 df-ef 15849 df-sin 15851 df-cos 15852 df-pi 15854 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-hom 17056 df-cco 17057 df-rest 17203 df-topn 17204 df-0g 17222 df-gsum 17223 df-topgen 17224 df-pt 17225 df-prds 17228 df-ordt 17282 df-xrs 17283 df-qtop 17288 df-imas 17289 df-xps 17291 df-mre 17365 df-mrc 17366 df-acs 17368 df-ps 18354 df-tsr 18355 df-plusf 18395 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-mhm 18500 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-mulg 18770 df-subg 18821 df-cntz 18992 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-cring 19854 df-subrg 20094 df-abv 20149 df-lmod 20197 df-scaf 20198 df-sra 20506 df-rgmod 20507 df-psmet 20661 df-xmet 20662 df-met 20663 df-bl 20664 df-mopn 20665 df-fbas 20666 df-fg 20667 df-cnfld 20670 df-top 22115 df-topon 22132 df-topsp 22154 df-bases 22168 df-cld 22242 df-ntr 22243 df-cls 22244 df-nei 22321 df-lp 22359 df-perf 22360 df-cn 22450 df-cnp 22451 df-haus 22538 df-tx 22785 df-hmeo 22978 df-fil 23069 df-fm 23161 df-flim 23162 df-flf 23163 df-tmd 23295 df-tgp 23296 df-tsms 23350 df-trg 23383 df-xms 23545 df-ms 23546 df-tms 23547 df-nm 23810 df-ngp 23811 df-nrg 23813 df-nlm 23814 df-ii 24112 df-cncf 24113 df-limc 25102 df-dv 25103 df-log 25784 df-esum 32102 df-siga 32183 df-carsg 32375 |
This theorem is referenced by: omsmeas 32396 |
Copyright terms: Public domain | W3C validator |