Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgsiga Structured version   Visualization version   GIF version

Theorem carsgsiga 34306
Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgsiga (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgsiga
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 34288 . . 3 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
4 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
51, 2, 4baselcarsg 34290 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
61adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
72adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8 simpr 484 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑔 ∈ (toCaraSiga‘𝑀))
96, 7, 8difelcarsg 34294 . . . . 5 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → (𝑂𝑔) ∈ (toCaraSiga‘𝑀))
109ralrimiva 3121 . . . 4 (𝜑 → ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀))
111ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑂𝑉)
122ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
134ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → (𝑀‘∅) = 0)
14 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
15143adant1r 1178 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
16153adant1r 1178 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
17 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
18173adant1r 1178 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
19183adant1r 1178 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
20 simpr 484 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ≼ ω)
21 elpwi 4558 . . . . . . . 8 (𝑔 ∈ 𝒫 (toCaraSiga‘𝑀) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2221ad2antlr 727 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2311, 12, 13, 16, 19, 20, 22carsgclctun 34305 . . . . . 6 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ∈ (toCaraSiga‘𝑀))
2423ex 412 . . . . 5 ((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) → (𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
2524ralrimiva 3121 . . . 4 (𝜑 → ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
265, 10, 253jca 1128 . . 3 (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))
273, 26jca 511 . 2 (𝜑 → ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
28 fvex 6835 . . 3 (toCaraSiga‘𝑀) ∈ V
29 issiga 34095 . . 3 ((toCaraSiga‘𝑀) ∈ V → ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))))
3028, 29ax-mp 5 . 2 ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
3127, 30sylibr 234 1 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cdif 3900  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  ωcom 7799  cdom 8870  0cc0 11009  +∞cpnf 11146  cle 11150  [,]cicc 13251  Σ*cesum 34010  sigAlgebracsiga 34091  toCaraSigaccarsg 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 34011  df-siga 34092  df-carsg 34286
This theorem is referenced by:  omsmeas  34307
  Copyright terms: Public domain W3C validator