| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgsiga | Structured version Visualization version GIF version | ||
| Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| carsgsiga.3 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
| Ref | Expression |
|---|---|
| carsgsiga | ⊢ (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 3 | 1, 2 | carsgcl 34303 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
| 4 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
| 5 | 1, 2, 4 | baselcarsg 34305 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| 6 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
| 7 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑔 ∈ (toCaraSiga‘𝑀)) | |
| 9 | 6, 7, 8 | difelcarsg 34309 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (toCaraSiga‘𝑀)) → (𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀)) |
| 10 | 9 | ralrimiva 3127 | . . . 4 ⊢ (𝜑 → ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀)) |
| 11 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑂 ∈ 𝑉) |
| 12 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 13 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → (𝑀‘∅) = 0) |
| 14 | carsgsiga.2 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
| 15 | 14 | 3adant1r 1178 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 16 | 15 | 3adant1r 1178 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 17 | carsgsiga.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) | |
| 18 | 17 | 3adant1r 1178 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
| 19 | 18 | 3adant1r 1178 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
| 20 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ≼ ω) | |
| 21 | elpwi 4578 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝒫 (toCaraSiga‘𝑀) → 𝑔 ⊆ (toCaraSiga‘𝑀)) | |
| 22 | 21 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ⊆ (toCaraSiga‘𝑀)) |
| 23 | 11, 12, 13, 16, 19, 20, 22 | carsgclctun 34320 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) → (𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))) |
| 25 | 24 | ralrimiva 3127 | . . . 4 ⊢ (𝜑 → ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))) |
| 26 | 5, 10, 25 | 3jca 1128 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)))) |
| 27 | 3, 26 | jca 511 | . 2 ⊢ (𝜑 → ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))))) |
| 28 | fvex 6878 | . . 3 ⊢ (toCaraSiga‘𝑀) ∈ V | |
| 29 | issiga 34110 | . . 3 ⊢ ((toCaraSiga‘𝑀) ∈ V → ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀)))))) | |
| 30 | 28, 29 | ax-mp 5 | . 2 ⊢ ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂 ∖ 𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → ∪ 𝑔 ∈ (toCaraSiga‘𝑀))))) |
| 31 | 27, 30 | sylibr 234 | 1 ⊢ (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3046 Vcvv 3455 ∖ cdif 3919 ⊆ wss 3922 ∅c0 4304 𝒫 cpw 4571 ∪ cuni 4879 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ωcom 7850 ≼ cdom 8920 0cc0 11086 +∞cpnf 11223 ≤ cle 11227 [,]cicc 13322 Σ*cesum 34025 sigAlgebracsiga 34106 toCaraSigaccarsg 34300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 ax-mulf 11166 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-disj 5083 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-dju 9872 df-card 9910 df-acn 9913 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-ordt 17470 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-ps 18531 df-tsr 18532 df-plusf 18572 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20774 df-scaf 20775 df-sra 21086 df-rgmod 21087 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-tmd 23965 df-tgp 23966 df-tsms 24020 df-trg 24053 df-xms 24214 df-ms 24215 df-tms 24216 df-nm 24476 df-ngp 24477 df-nrg 24479 df-nlm 24480 df-ii 24776 df-cncf 24777 df-limc 25774 df-dv 25775 df-log 26472 df-esum 34026 df-siga 34107 df-carsg 34301 |
| This theorem is referenced by: omsmeas 34322 |
| Copyright terms: Public domain | W3C validator |