Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgsiga Structured version   Visualization version   GIF version

Theorem carsgsiga 34321
Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgsiga (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgsiga
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 34303 . . 3 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
4 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
51, 2, 4baselcarsg 34305 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
61adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
72adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8 simpr 484 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑔 ∈ (toCaraSiga‘𝑀))
96, 7, 8difelcarsg 34309 . . . . 5 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → (𝑂𝑔) ∈ (toCaraSiga‘𝑀))
109ralrimiva 3127 . . . 4 (𝜑 → ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀))
111ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑂𝑉)
122ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
134ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → (𝑀‘∅) = 0)
14 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
15143adant1r 1178 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
16153adant1r 1178 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
17 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
18173adant1r 1178 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
19183adant1r 1178 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
20 simpr 484 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ≼ ω)
21 elpwi 4578 . . . . . . . 8 (𝑔 ∈ 𝒫 (toCaraSiga‘𝑀) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2221ad2antlr 727 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2311, 12, 13, 16, 19, 20, 22carsgclctun 34320 . . . . . 6 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ∈ (toCaraSiga‘𝑀))
2423ex 412 . . . . 5 ((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) → (𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
2524ralrimiva 3127 . . . 4 (𝜑 → ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
265, 10, 253jca 1128 . . 3 (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))
273, 26jca 511 . 2 (𝜑 → ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
28 fvex 6878 . . 3 (toCaraSiga‘𝑀) ∈ V
29 issiga 34110 . . 3 ((toCaraSiga‘𝑀) ∈ V → ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))))
3028, 29ax-mp 5 . 2 ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
3127, 30sylibr 234 1 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3046  Vcvv 3455  cdif 3919  wss 3922  c0 4304  𝒫 cpw 4571   cuni 4879   class class class wbr 5115  wf 6515  cfv 6519  (class class class)co 7394  ωcom 7850  cdom 8920  0cc0 11086  +∞cpnf 11223  cle 11227  [,]cicc 13322  Σ*cesum 34025  sigAlgebracsiga 34106  toCaraSigaccarsg 34300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-disj 5083  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-dju 9872  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ioo 13323  df-ioc 13324  df-ico 13325  df-icc 13326  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-fac 14249  df-bc 14278  df-hash 14306  df-shft 15043  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-ordt 17470  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-ps 18531  df-tsr 18532  df-plusf 18572  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20774  df-scaf 20775  df-sra 21086  df-rgmod 21087  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-tmd 23965  df-tgp 23966  df-tsms 24020  df-trg 24053  df-xms 24214  df-ms 24215  df-tms 24216  df-nm 24476  df-ngp 24477  df-nrg 24479  df-nlm 24480  df-ii 24776  df-cncf 24777  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34026  df-siga 34107  df-carsg 34301
This theorem is referenced by:  omsmeas  34322
  Copyright terms: Public domain W3C validator