Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgsiga Structured version   Visualization version   GIF version

Theorem carsgsiga 31588
Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgsiga (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgsiga
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 31570 . . 3 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
4 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
51, 2, 4baselcarsg 31572 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
61adantr 483 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
72adantr 483 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8 simpr 487 . . . . . 6 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → 𝑔 ∈ (toCaraSiga‘𝑀))
96, 7, 8difelcarsg 31576 . . . . 5 ((𝜑𝑔 ∈ (toCaraSiga‘𝑀)) → (𝑂𝑔) ∈ (toCaraSiga‘𝑀))
109ralrimiva 3169 . . . 4 (𝜑 → ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀))
111ad2antrr 724 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑂𝑉)
122ad2antrr 724 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
134ad2antrr 724 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → (𝑀‘∅) = 0)
14 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
15143adant1r 1173 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
16153adant1r 1173 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
17 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
18173adant1r 1173 . . . . . . . 8 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
19183adant1r 1173 . . . . . . 7 ((((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
20 simpr 487 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ≼ ω)
21 elpwi 4524 . . . . . . . 8 (𝑔 ∈ 𝒫 (toCaraSiga‘𝑀) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2221ad2antlr 725 . . . . . . 7 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ⊆ (toCaraSiga‘𝑀))
2311, 12, 13, 16, 19, 20, 22carsgclctun 31587 . . . . . 6 (((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) ∧ 𝑔 ≼ ω) → 𝑔 ∈ (toCaraSiga‘𝑀))
2423ex 415 . . . . 5 ((𝜑𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)) → (𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
2524ralrimiva 3169 . . . 4 (𝜑 → ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))
265, 10, 253jca 1124 . . 3 (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))
273, 26jca 514 . 2 (𝜑 → ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
28 fvex 6659 . . 3 (toCaraSiga‘𝑀) ∈ V
29 issiga 31379 . . 3 ((toCaraSiga‘𝑀) ∈ V → ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀))))))
3028, 29ax-mp 5 . 2 ((toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂) ↔ ((toCaraSiga‘𝑀) ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ (toCaraSiga‘𝑀)(𝑂𝑔) ∈ (toCaraSiga‘𝑀) ∧ ∀𝑔 ∈ 𝒫 (toCaraSiga‘𝑀)(𝑔 ≼ ω → 𝑔 ∈ (toCaraSiga‘𝑀)))))
3127, 30sylibr 236 1 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3125  Vcvv 3473  cdif 3910  wss 3913  c0 4269  𝒫 cpw 4515   cuni 4814   class class class wbr 5042  wf 6327  cfv 6331  (class class class)co 7133  ωcom 7558  cdom 8485  0cc0 10515  +∞cpnf 10650  cle 10654  [,]cicc 12720  Σ*cesum 31294  sigAlgebracsiga 31375  toCaraSigaccarsg 31567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-ac2 9863  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-pm 8387  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-fi 8853  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-acn 9349  df-ac 9520  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ioo 12721  df-ioc 12722  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-fac 13619  df-bc 13648  df-hash 13676  df-shft 14406  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023  df-ef 15401  df-sin 15403  df-cos 15404  df-pi 15406  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-ordt 16753  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-ps 17789  df-tsr 17790  df-plusf 17830  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-cntz 18426  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-subrg 19509  df-abv 19564  df-lmod 19612  df-scaf 19613  df-sra 19920  df-rgmod 19921  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lp 21720  df-perf 21721  df-cn 21811  df-cnp 21812  df-haus 21899  df-tx 22146  df-hmeo 22339  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-tmd 22656  df-tgp 22657  df-tsms 22711  df-trg 22744  df-xms 22906  df-ms 22907  df-tms 22908  df-nm 23168  df-ngp 23169  df-nrg 23171  df-nlm 23172  df-ii 23461  df-cncf 23462  df-limc 24448  df-dv 24449  df-log 25127  df-esum 31295  df-siga 31376  df-carsg 31568
This theorem is referenced by:  omsmeas  31589
  Copyright terms: Public domain W3C validator