Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimf Structured version   Visualization version   GIF version

Theorem fnlimf 43219
Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimf.p 𝑚𝜑
fnlimf.m 𝑚𝐹
fnlimf.n 𝑥𝐹
fnlimf.z 𝑍 = (ℤ𝑀)
fnlimf.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimf.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
fnlimf (𝜑𝐺:𝐷⟶ℝ)
Distinct variable groups:   𝐷,𝑚,𝑛   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimf.p . . . 4 𝑚𝜑
2 nfv 1917 . . . 4 𝑚 𝑧𝐷
31, 2nfan 1902 . . 3 𝑚(𝜑𝑧𝐷)
4 fnlimf.m . . 3 𝑚𝐹
5 fnlimf.n . . 3 𝑥𝐹
6 fnlimf.z . . 3 𝑍 = (ℤ𝑀)
7 fnlimf.f . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
87adantlr 712 . . 3 (((𝜑𝑧𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
9 fnlimf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
10 simpr 485 . . 3 ((𝜑𝑧𝐷) → 𝑧𝐷)
113, 4, 5, 6, 8, 9, 10fnlimfvre 43215 . 2 ((𝜑𝑧𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ∈ ℝ)
12 fnlimf.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
13 nfrab1 3317 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
149, 13nfcxfr 2905 . . . 4 𝑥𝐷
15 nfcv 2907 . . . 4 𝑧𝐷
16 nfcv 2907 . . . 4 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
17 nfcv 2907 . . . . 5 𝑥
18 nfcv 2907 . . . . . 6 𝑥𝑍
19 nfcv 2907 . . . . . . . 8 𝑥𝑚
205, 19nffv 6784 . . . . . . 7 𝑥(𝐹𝑚)
21 nfcv 2907 . . . . . . 7 𝑥𝑧
2220, 21nffv 6784 . . . . . 6 𝑥((𝐹𝑚)‘𝑧)
2318, 22nfmpt 5181 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
2417, 23nffv 6784 . . . 4 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
25 fveq2 6774 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
2625mpteq2dv 5176 . . . . 5 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2726fveq2d 6778 . . . 4 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2814, 15, 16, 24, 27cbvmptf 5183 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2912, 28eqtri 2766 . 2 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
3011, 29fmptd 6988 1 (𝜑𝐺:𝐷⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  {crab 3068   ciun 4924   ciin 4925  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  cr 10870  cuz 12582  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator