Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimf Structured version   Visualization version   GIF version

Theorem fnlimf 42732
 Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimf.p 𝑚𝜑
fnlimf.m 𝑚𝐹
fnlimf.n 𝑥𝐹
fnlimf.z 𝑍 = (ℤ𝑀)
fnlimf.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimf.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
fnlimf (𝜑𝐺:𝐷⟶ℝ)
Distinct variable groups:   𝐷,𝑚,𝑛   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimf.p . . . 4 𝑚𝜑
2 nfv 1916 . . . 4 𝑚 𝑧𝐷
31, 2nfan 1901 . . 3 𝑚(𝜑𝑧𝐷)
4 fnlimf.m . . 3 𝑚𝐹
5 fnlimf.n . . 3 𝑥𝐹
6 fnlimf.z . . 3 𝑍 = (ℤ𝑀)
7 fnlimf.f . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
87adantlr 714 . . 3 (((𝜑𝑧𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
9 fnlimf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
10 simpr 488 . . 3 ((𝜑𝑧𝐷) → 𝑧𝐷)
113, 4, 5, 6, 8, 9, 10fnlimfvre 42728 . 2 ((𝜑𝑧𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ∈ ℝ)
12 fnlimf.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
13 nfrab1 3303 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
149, 13nfcxfr 2918 . . . 4 𝑥𝐷
15 nfcv 2920 . . . 4 𝑧𝐷
16 nfcv 2920 . . . 4 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
17 nfcv 2920 . . . . 5 𝑥
18 nfcv 2920 . . . . . 6 𝑥𝑍
19 nfcv 2920 . . . . . . . 8 𝑥𝑚
205, 19nffv 6674 . . . . . . 7 𝑥(𝐹𝑚)
21 nfcv 2920 . . . . . . 7 𝑥𝑧
2220, 21nffv 6674 . . . . . 6 𝑥((𝐹𝑚)‘𝑧)
2318, 22nfmpt 5134 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
2417, 23nffv 6674 . . . 4 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
25 fveq2 6664 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
2625mpteq2dv 5133 . . . . 5 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2726fveq2d 6668 . . . 4 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2814, 15, 16, 24, 27cbvmptf 5136 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2912, 28eqtri 2782 . 2 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
3011, 29fmptd 6876 1 (𝜑𝐺:𝐷⟶ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1539  Ⅎwnf 1786   ∈ wcel 2112  Ⅎwnfc 2900  {crab 3075  ∪ ciun 4887  ∩ ciin 4888   ↦ cmpt 5117  dom cdm 5529  ⟶wf 6337  ‘cfv 6341  ℝcr 10588  ℤ≥cuz 12296   ⇝ cli 14903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-sup 8953  df-inf 8954  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-fl 13225  df-seq 13433  df-exp 13494  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-rlim 14908 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator