| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimf | Structured version Visualization version GIF version | ||
| Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fnlimf.p | ⊢ Ⅎ𝑚𝜑 |
| fnlimf.m | ⊢ Ⅎ𝑚𝐹 |
| fnlimf.n | ⊢ Ⅎ𝑥𝐹 |
| fnlimf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fnlimf.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| fnlimf.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| fnlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
| Ref | Expression |
|---|---|
| fnlimf | ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnlimf.p | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑚 𝑧 ∈ 𝐷 | |
| 3 | 1, 2 | nfan 1899 | . . 3 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑧 ∈ 𝐷) |
| 4 | fnlimf.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
| 5 | fnlimf.n | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 6 | fnlimf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | fnlimf.f | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
| 8 | 7 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| 9 | fnlimf.d | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) | |
| 11 | 3, 4, 5, 6, 8, 9, 10 | fnlimfvre 45703 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ∈ ℝ) |
| 12 | fnlimf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
| 13 | nfrab1 3436 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 14 | 9, 13 | nfcxfr 2896 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
| 15 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑧𝐷 | |
| 16 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
| 17 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
| 18 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
| 19 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
| 20 | 5, 19 | nffv 6886 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
| 21 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 22 | 20, 21 | nffv 6886 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
| 23 | 18, 22 | nfmpt 5219 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
| 24 | 17, 23 | nffv 6886 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 25 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
| 26 | 25 | mpteq2dv 5215 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 27 | 26 | fveq2d 6880 | . . . 4 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 28 | 14, 15, 16, 24, 27 | cbvmptf 5221 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 29 | 12, 28 | eqtri 2758 | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 30 | 11, 29 | fmptd 7104 | 1 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 {crab 3415 ∪ ciun 4967 ∩ ciin 4968 ↦ cmpt 5201 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 ℝcr 11128 ℤ≥cuz 12852 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |