Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimf | Structured version Visualization version GIF version |
Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimf.p | ⊢ Ⅎ𝑚𝜑 |
fnlimf.m | ⊢ Ⅎ𝑚𝐹 |
fnlimf.n | ⊢ Ⅎ𝑥𝐹 |
fnlimf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fnlimf.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
fnlimf.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
fnlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
Ref | Expression |
---|---|
fnlimf | ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimf.p | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
2 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑚 𝑧 ∈ 𝐷 | |
3 | 1, 2 | nfan 1901 | . . 3 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑧 ∈ 𝐷) |
4 | fnlimf.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
5 | fnlimf.n | . . 3 ⊢ Ⅎ𝑥𝐹 | |
6 | fnlimf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | fnlimf.f | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
8 | 7 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
9 | fnlimf.d | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
10 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) | |
11 | 3, 4, 5, 6, 8, 9, 10 | fnlimfvre 42728 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ∈ ℝ) |
12 | fnlimf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
13 | nfrab1 3303 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
14 | 9, 13 | nfcxfr 2918 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
15 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑧𝐷 | |
16 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
17 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
18 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
19 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
20 | 5, 19 | nffv 6674 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
21 | nfcv 2920 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
22 | 20, 21 | nffv 6674 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
23 | 18, 22 | nfmpt 5134 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
24 | 17, 23 | nffv 6674 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
25 | fveq2 6664 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
26 | 25 | mpteq2dv 5133 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
27 | 26 | fveq2d 6668 | . . . 4 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
28 | 14, 15, 16, 24, 27 | cbvmptf 5136 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
29 | 12, 28 | eqtri 2782 | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
30 | 11, 29 | fmptd 6876 | 1 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 {crab 3075 ∪ ciun 4887 ∩ ciin 4888 ↦ cmpt 5117 dom cdm 5529 ⟶wf 6337 ‘cfv 6341 ℝcr 10588 ℤ≥cuz 12296 ⇝ cli 14903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-pm 8426 df-en 8542 df-dom 8543 df-sdom 8544 df-sup 8953 df-inf 8954 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-rp 12445 df-fl 13225 df-seq 13433 df-exp 13494 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-rlim 14908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |