Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimf Structured version   Visualization version   GIF version

Theorem fnlimf 41966
Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimf.p 𝑚𝜑
fnlimf.m 𝑚𝐹
fnlimf.n 𝑥𝐹
fnlimf.z 𝑍 = (ℤ𝑀)
fnlimf.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimf.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
fnlimf (𝜑𝐺:𝐷⟶ℝ)
Distinct variable groups:   𝐷,𝑚,𝑛   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimf.p . . . 4 𝑚𝜑
2 nfv 1915 . . . 4 𝑚 𝑧𝐷
31, 2nfan 1900 . . 3 𝑚(𝜑𝑧𝐷)
4 fnlimf.m . . 3 𝑚𝐹
5 fnlimf.n . . 3 𝑥𝐹
6 fnlimf.z . . 3 𝑍 = (ℤ𝑀)
7 fnlimf.f . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
87adantlr 713 . . 3 (((𝜑𝑧𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
9 fnlimf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
10 simpr 487 . . 3 ((𝜑𝑧𝐷) → 𝑧𝐷)
113, 4, 5, 6, 8, 9, 10fnlimfvre 41962 . 2 ((𝜑𝑧𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ∈ ℝ)
12 fnlimf.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
13 nfrab1 3386 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
149, 13nfcxfr 2977 . . . 4 𝑥𝐷
15 nfcv 2979 . . . 4 𝑧𝐷
16 nfcv 2979 . . . 4 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
17 nfcv 2979 . . . . 5 𝑥
18 nfcv 2979 . . . . . 6 𝑥𝑍
19 nfcv 2979 . . . . . . . 8 𝑥𝑚
205, 19nffv 6682 . . . . . . 7 𝑥(𝐹𝑚)
21 nfcv 2979 . . . . . . 7 𝑥𝑧
2220, 21nffv 6682 . . . . . 6 𝑥((𝐹𝑚)‘𝑧)
2318, 22nfmpt 5165 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
2417, 23nffv 6682 . . . 4 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
25 fveq2 6672 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
2625mpteq2dv 5164 . . . . 5 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2726fveq2d 6676 . . . 4 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2814, 15, 16, 24, 27cbvmptf 5167 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
2912, 28eqtri 2846 . 2 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
3011, 29fmptd 6880 1 (𝜑𝐺:𝐷⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wnfc 2963  {crab 3144   ciun 4921   ciin 4922  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  cr 10538  cuz 12246  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator