Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimf | Structured version Visualization version GIF version |
Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimf.p | ⊢ Ⅎ𝑚𝜑 |
fnlimf.m | ⊢ Ⅎ𝑚𝐹 |
fnlimf.n | ⊢ Ⅎ𝑥𝐹 |
fnlimf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fnlimf.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
fnlimf.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
fnlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
Ref | Expression |
---|---|
fnlimf | ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimf.p | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
2 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑚 𝑧 ∈ 𝐷 | |
3 | 1, 2 | nfan 1902 | . . 3 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑧 ∈ 𝐷) |
4 | fnlimf.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
5 | fnlimf.n | . . 3 ⊢ Ⅎ𝑥𝐹 | |
6 | fnlimf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | fnlimf.f | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
8 | 7 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
9 | fnlimf.d | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
10 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) | |
11 | 3, 4, 5, 6, 8, 9, 10 | fnlimfvre 43215 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ∈ ℝ) |
12 | fnlimf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
13 | nfrab1 3317 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
14 | 9, 13 | nfcxfr 2905 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
15 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑧𝐷 | |
16 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
17 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
18 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
19 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
20 | 5, 19 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
21 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
22 | 20, 21 | nffv 6784 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
23 | 18, 22 | nfmpt 5181 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
24 | 17, 23 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
25 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
26 | 25 | mpteq2dv 5176 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
27 | 26 | fveq2d 6778 | . . . 4 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
28 | 14, 15, 16, 24, 27 | cbvmptf 5183 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
29 | 12, 28 | eqtri 2766 | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
30 | 11, 29 | fmptd 6988 | 1 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 {crab 3068 ∪ ciun 4924 ∩ ciin 4925 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |