| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfvre2 | Structured version Visualization version GIF version | ||
| Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fnlimfvre2.p | ⊢ Ⅎ𝑚𝜑 |
| fnlimfvre2.m | ⊢ Ⅎ𝑚𝐹 |
| fnlimfvre2.n | ⊢ Ⅎ𝑥𝐹 |
| fnlimfvre2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fnlimfvre2.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| fnlimfvre2.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| fnlimfvre2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
| fnlimfvre2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnlimfvre2 | ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnlimfvre2.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
| 2 | fnlimfvre2.d | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 3 | nfrab1 3429 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 4 | 2, 3 | nfcxfr 2890 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑧𝐷 | |
| 6 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
| 7 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥 ⇝ | |
| 8 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝑍 | |
| 9 | fnlimfvre2.n | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 10 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑚 | |
| 11 | 9, 10 | nffv 6871 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
| 12 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
| 13 | 11, 12 | nffv 6871 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
| 14 | 8, 13 | nfmpt 5208 | . . . . . 6 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
| 15 | 7, 14 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 16 | fveq2 6861 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
| 17 | 16 | mpteq2dv 5204 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 18 | 17 | fveq2d 6865 | . . . . 5 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 19 | 4, 5, 6, 15, 18 | cbvmptf 5210 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 20 | 1, 19 | eqtri 2753 | . . 3 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 21 | fveq2 6861 | . . . . . 6 ⊢ (𝑋 = 𝑧 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑚)‘𝑧)) | |
| 22 | 21 | mpteq2dv 5204 | . . . . 5 ⊢ (𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 23 | eqcom 2737 | . . . . . . 7 ⊢ (𝑋 = 𝑧 ↔ 𝑧 = 𝑋) | |
| 24 | 23 | imbi1i 349 | . . . . . 6 ⊢ ((𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 25 | eqcom 2737 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) | |
| 26 | 25 | imbi2i 336 | . . . . . 6 ⊢ ((𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 27 | 24, 26 | bitri 275 | . . . . 5 ⊢ ((𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 28 | 22, 27 | mpbi 230 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 29 | 28 | fveq2d 6865 | . . 3 ⊢ (𝑧 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 30 | fnlimfvre2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 31 | fvexd 6876 | . . 3 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
| 32 | 20, 29, 30, 31 | fvmptd3 6994 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 33 | fnlimfvre2.p | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 34 | fnlimfvre2.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
| 35 | fnlimfvre2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 36 | fnlimfvre2.f | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
| 37 | 33, 34, 9, 35, 36, 2, 30 | fnlimfvre 45679 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| 38 | 32, 37 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 {crab 3408 Vcvv 3450 ∪ ciun 4958 ∩ ciin 4959 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 ℝcr 11074 ℤ≥cuz 12800 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |