Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre2 Structured version   Visualization version   GIF version

Theorem fnlimfvre2 45692
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre2.p 𝑚𝜑
fnlimfvre2.m 𝑚𝐹
fnlimfvre2.n 𝑥𝐹
fnlimfvre2.z 𝑍 = (ℤ𝑀)
fnlimfvre2.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfvre2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre2 (𝜑 → (𝐺𝑋) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre2.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2 fnlimfvre2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfrab1 3457 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
42, 3nfcxfr 2903 . . . . 5 𝑥𝐷
5 nfcv 2905 . . . . 5 𝑧𝐷
6 nfcv 2905 . . . . 5 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7 nfcv 2905 . . . . . 6 𝑥
8 nfcv 2905 . . . . . . 7 𝑥𝑍
9 fnlimfvre2.n . . . . . . . . 9 𝑥𝐹
10 nfcv 2905 . . . . . . . . 9 𝑥𝑚
119, 10nffv 6916 . . . . . . . 8 𝑥(𝐹𝑚)
12 nfcv 2905 . . . . . . . 8 𝑥𝑧
1311, 12nffv 6916 . . . . . . 7 𝑥((𝐹𝑚)‘𝑧)
148, 13nfmpt 5249 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
157, 14nffv 6916 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
16 fveq2 6906 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1716mpteq2dv 5244 . . . . . 6 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
1817fveq2d 6910 . . . . 5 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
194, 5, 6, 15, 18cbvmptf 5251 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
201, 19eqtri 2765 . . 3 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
21 fveq2 6906 . . . . . 6 (𝑋 = 𝑧 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑧))
2221mpteq2dv 5244 . . . . 5 (𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
23 eqcom 2744 . . . . . . 7 (𝑋 = 𝑧𝑧 = 𝑋)
2423imbi1i 349 . . . . . 6 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
25 eqcom 2744 . . . . . . 7 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2625imbi2i 336 . . . . . 6 ((𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2724, 26bitri 275 . . . . 5 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2822, 27mpbi 230 . . . 4 (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2928fveq2d 6910 . . 3 (𝑧 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
30 fnlimfvre2.x . . 3 (𝜑𝑋𝐷)
31 fvexd 6921 . . 3 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
3220, 29, 30, 31fvmptd3 7039 . 2 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
33 fnlimfvre2.p . . 3 𝑚𝜑
34 fnlimfvre2.m . . 3 𝑚𝐹
35 fnlimfvre2.z . . 3 𝑍 = (ℤ𝑀)
36 fnlimfvre2.f . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
3733, 34, 9, 35, 36, 2, 30fnlimfvre 45689 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
3832, 37eqeltrd 2841 1 (𝜑 → (𝐺𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  {crab 3436  Vcvv 3480   ciun 4991   ciin 4992  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  cr 11154  cuz 12878  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator