Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre2 Structured version   Visualization version   GIF version

Theorem fnlimfvre2 43108
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre2.p 𝑚𝜑
fnlimfvre2.m 𝑚𝐹
fnlimfvre2.n 𝑥𝐹
fnlimfvre2.z 𝑍 = (ℤ𝑀)
fnlimfvre2.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfvre2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre2 (𝜑 → (𝐺𝑋) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre2.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2 fnlimfvre2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfrab1 3310 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
42, 3nfcxfr 2904 . . . . 5 𝑥𝐷
5 nfcv 2906 . . . . 5 𝑧𝐷
6 nfcv 2906 . . . . 5 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7 nfcv 2906 . . . . . 6 𝑥
8 nfcv 2906 . . . . . . 7 𝑥𝑍
9 fnlimfvre2.n . . . . . . . . 9 𝑥𝐹
10 nfcv 2906 . . . . . . . . 9 𝑥𝑚
119, 10nffv 6766 . . . . . . . 8 𝑥(𝐹𝑚)
12 nfcv 2906 . . . . . . . 8 𝑥𝑧
1311, 12nffv 6766 . . . . . . 7 𝑥((𝐹𝑚)‘𝑧)
148, 13nfmpt 5177 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
157, 14nffv 6766 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
16 fveq2 6756 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1716mpteq2dv 5172 . . . . . 6 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
1817fveq2d 6760 . . . . 5 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
194, 5, 6, 15, 18cbvmptf 5179 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
201, 19eqtri 2766 . . 3 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
21 fveq2 6756 . . . . . 6 (𝑋 = 𝑧 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑧))
2221mpteq2dv 5172 . . . . 5 (𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
23 eqcom 2745 . . . . . . 7 (𝑋 = 𝑧𝑧 = 𝑋)
2423imbi1i 349 . . . . . 6 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
25 eqcom 2745 . . . . . . 7 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2625imbi2i 335 . . . . . 6 ((𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2724, 26bitri 274 . . . . 5 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2822, 27mpbi 229 . . . 4 (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2928fveq2d 6760 . . 3 (𝑧 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
30 fnlimfvre2.x . . 3 (𝜑𝑋𝐷)
31 fvexd 6771 . . 3 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
3220, 29, 30, 31fvmptd3 6880 . 2 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
33 fnlimfvre2.p . . 3 𝑚𝜑
34 fnlimfvre2.m . . 3 𝑚𝐹
35 fnlimfvre2.z . . 3 𝑍 = (ℤ𝑀)
36 fnlimfvre2.f . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
3733, 34, 9, 35, 36, 2, 30fnlimfvre 43105 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
3832, 37eqeltrd 2839 1 (𝜑 → (𝐺𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  {crab 3067  Vcvv 3422   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  cr 10801  cuz 12511  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator