Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre2 Structured version   Visualization version   GIF version

Theorem fnlimfvre2 42319
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre2.p 𝑚𝜑
fnlimfvre2.m 𝑚𝐹
fnlimfvre2.n 𝑥𝐹
fnlimfvre2.z 𝑍 = (ℤ𝑀)
fnlimfvre2.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfvre2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre2 (𝜑 → (𝐺𝑋) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre2.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2 fnlimfvre2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfrab1 3337 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
42, 3nfcxfr 2953 . . . . 5 𝑥𝐷
5 nfcv 2955 . . . . 5 𝑧𝐷
6 nfcv 2955 . . . . 5 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7 nfcv 2955 . . . . . 6 𝑥
8 nfcv 2955 . . . . . . 7 𝑥𝑍
9 fnlimfvre2.n . . . . . . . . 9 𝑥𝐹
10 nfcv 2955 . . . . . . . . 9 𝑥𝑚
119, 10nffv 6655 . . . . . . . 8 𝑥(𝐹𝑚)
12 nfcv 2955 . . . . . . . 8 𝑥𝑧
1311, 12nffv 6655 . . . . . . 7 𝑥((𝐹𝑚)‘𝑧)
148, 13nfmpt 5127 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
157, 14nffv 6655 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
16 fveq2 6645 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1716mpteq2dv 5126 . . . . . 6 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
1817fveq2d 6649 . . . . 5 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
194, 5, 6, 15, 18cbvmptf 5129 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
201, 19eqtri 2821 . . 3 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
21 fveq2 6645 . . . . . 6 (𝑋 = 𝑧 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑧))
2221mpteq2dv 5126 . . . . 5 (𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
23 eqcom 2805 . . . . . . 7 (𝑋 = 𝑧𝑧 = 𝑋)
2423imbi1i 353 . . . . . 6 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
25 eqcom 2805 . . . . . . 7 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2625imbi2i 339 . . . . . 6 ((𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2724, 26bitri 278 . . . . 5 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
2822, 27mpbi 233 . . . 4 (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2928fveq2d 6649 . . 3 (𝑧 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
30 fnlimfvre2.x . . 3 (𝜑𝑋𝐷)
31 fvexd 6660 . . 3 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
3220, 29, 30, 31fvmptd3 6768 . 2 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
33 fnlimfvre2.p . . 3 𝑚𝜑
34 fnlimfvre2.m . . 3 𝑚𝐹
35 fnlimfvre2.z . . 3 𝑍 = (ℤ𝑀)
36 fnlimfvre2.f . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
3733, 34, 9, 35, 36, 2, 30fnlimfvre 42316 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
3832, 37eqeltrd 2890 1 (𝜑 → (𝐺𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  {crab 3110  Vcvv 3441   ciun 4881   ciin 4882  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  cr 10525  cuz 12231  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator