| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfvre2 | Structured version Visualization version GIF version | ||
| Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fnlimfvre2.p | ⊢ Ⅎ𝑚𝜑 |
| fnlimfvre2.m | ⊢ Ⅎ𝑚𝐹 |
| fnlimfvre2.n | ⊢ Ⅎ𝑥𝐹 |
| fnlimfvre2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fnlimfvre2.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| fnlimfvre2.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| fnlimfvre2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
| fnlimfvre2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnlimfvre2 | ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnlimfvre2.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
| 2 | fnlimfvre2.d | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 3 | nfrab1 3415 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 4 | 2, 3 | nfcxfr 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
| 5 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑧𝐷 | |
| 6 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
| 7 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥 ⇝ | |
| 8 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝑍 | |
| 9 | fnlimfvre2.n | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 10 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑚 | |
| 11 | 9, 10 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
| 12 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
| 13 | 11, 12 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
| 14 | 8, 13 | nfmpt 5189 | . . . . . 6 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
| 15 | 7, 14 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 16 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
| 17 | 16 | mpteq2dv 5185 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 18 | 17 | fveq2d 6826 | . . . . 5 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 19 | 4, 5, 6, 15, 18 | cbvmptf 5191 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 20 | 1, 19 | eqtri 2754 | . . 3 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 21 | fveq2 6822 | . . . . . 6 ⊢ (𝑋 = 𝑧 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑚)‘𝑧)) | |
| 22 | 21 | mpteq2dv 5185 | . . . . 5 ⊢ (𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
| 23 | eqcom 2738 | . . . . . . 7 ⊢ (𝑋 = 𝑧 ↔ 𝑧 = 𝑋) | |
| 24 | 23 | imbi1i 349 | . . . . . 6 ⊢ ((𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
| 25 | eqcom 2738 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) | |
| 26 | 25 | imbi2i 336 | . . . . . 6 ⊢ ((𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 27 | 24, 26 | bitri 275 | . . . . 5 ⊢ ((𝑋 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 28 | 22, 27 | mpbi 230 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 29 | 28 | fveq2d 6826 | . . 3 ⊢ (𝑧 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 30 | fnlimfvre2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 31 | fvexd 6837 | . . 3 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
| 32 | 20, 29, 30, 31 | fvmptd3 6952 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 33 | fnlimfvre2.p | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 34 | fnlimfvre2.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
| 35 | fnlimfvre2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 36 | fnlimfvre2.f | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
| 37 | 33, 34, 9, 35, 36, 2, 30 | fnlimfvre 45718 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| 38 | 32, 37 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 {crab 3395 Vcvv 3436 ∪ ciun 4941 ∩ ciin 4942 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 ℤ≥cuz 12732 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |