![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequzmptf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupequzmptf.j | ⊢ Ⅎ𝑗𝜑 |
limsupequzmptf.o | ⊢ Ⅎ𝑗𝐴 |
limsupequzmptf.p | ⊢ Ⅎ𝑗𝐵 |
limsupequzmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupequzmptf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
limsupequzmptf.a | ⊢ 𝐴 = (ℤ≥‘𝑀) |
limsupequzmptf.b | ⊢ 𝐵 = (ℤ≥‘𝑁) |
limsupequzmptf.c | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
limsupequzmptf.d | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
limsupequzmptf | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1957 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | limsupequzmptf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupequzmptf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | limsupequzmptf.a | . . 3 ⊢ 𝐴 = (ℤ≥‘𝑀) | |
5 | limsupequzmptf.b | . . 3 ⊢ 𝐵 = (ℤ≥‘𝑁) | |
6 | limsupequzmptf.j | . . . . . 6 ⊢ Ⅎ𝑗𝜑 | |
7 | limsupequzmptf.o | . . . . . . 7 ⊢ Ⅎ𝑗𝐴 | |
8 | 7 | nfcri 2928 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐴 |
9 | 6, 8 | nfan 1946 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐴) |
10 | nfcsb1v 3766 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 | |
11 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑗𝑉 | |
12 | 10, 11 | nfel 2945 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉 |
13 | 9, 12 | nfim 1943 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
14 | eleq1w 2841 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
15 | 14 | anbi2d 622 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
16 | csbeq1a 3759 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑘 / 𝑗⦌𝐶) | |
17 | 16 | eleq1d 2843 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑉 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉)) |
18 | 15, 17 | imbi12d 336 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉))) |
19 | limsupequzmptf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
20 | 13, 18, 19 | chvar 2359 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
21 | limsupequzmptf.p | . . . . . . 7 ⊢ Ⅎ𝑗𝐵 | |
22 | 21 | nfcri 2928 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐵 |
23 | 6, 22 | nfan 1946 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐵) |
24 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑗𝑊 | |
25 | 10, 24 | nfel 2945 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊 |
26 | 23, 25 | nfim 1943 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
27 | eleq1w 2841 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) | |
28 | 27 | anbi2d 622 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐵) ↔ (𝜑 ∧ 𝑘 ∈ 𝐵))) |
29 | 16 | eleq1d 2843 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑊 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊)) |
30 | 28, 29 | imbi12d 336 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊))) |
31 | limsupequzmptf.d | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) | |
32 | 26, 30, 31 | chvar 2359 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
33 | 1, 2, 3, 4, 5, 20, 32 | limsupequzmpt 40861 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
34 | nfcv 2933 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
35 | nfcv 2933 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
36 | 7, 34, 35, 10, 16 | cbvmptf 4983 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
37 | 36 | fveq2i 6449 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
38 | 37 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
39 | nfcv 2933 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
40 | 21, 39, 35, 10, 16 | cbvmptf 4983 | . . . 4 ⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
41 | 40 | fveq2i 6449 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
42 | 41 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
43 | 33, 38, 42 | 3eqtr4d 2823 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2106 Ⅎwnfc 2918 ⦋csb 3750 ↦ cmpt 4965 ‘cfv 6135 ℤcz 11728 ℤ≥cuz 11992 lim supclsp 14609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-ico 12493 df-limsup 14610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |