Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptf Structured version   Visualization version   GIF version

Theorem limsupequzmptf 45702
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptf.j 𝑗𝜑
limsupequzmptf.o 𝑗𝐴
limsupequzmptf.p 𝑗𝐵
limsupequzmptf.m (𝜑𝑀 ∈ ℤ)
limsupequzmptf.n (𝜑𝑁 ∈ ℤ)
limsupequzmptf.a 𝐴 = (ℤ𝑀)
limsupequzmptf.b 𝐵 = (ℤ𝑁)
limsupequzmptf.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptf.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmptf (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝑗,𝑉   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem limsupequzmptf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑘𝜑
2 limsupequzmptf.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupequzmptf.n . . 3 (𝜑𝑁 ∈ ℤ)
4 limsupequzmptf.a . . 3 𝐴 = (ℤ𝑀)
5 limsupequzmptf.b . . 3 𝐵 = (ℤ𝑁)
6 limsupequzmptf.j . . . . . 6 𝑗𝜑
7 limsupequzmptf.o . . . . . . 7 𝑗𝐴
87nfcri 2883 . . . . . 6 𝑗 𝑘𝐴
96, 8nfan 1899 . . . . 5 𝑗(𝜑𝑘𝐴)
10 nfcsb1v 3883 . . . . . 6 𝑗𝑘 / 𝑗𝐶
11 nfcv 2891 . . . . . 6 𝑗𝑉
1210, 11nfel 2906 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑉
139, 12nfim 1896 . . . 4 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
14 eleq1w 2811 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1514anbi2d 630 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
16 csbeq1a 3873 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑘 / 𝑗𝐶)
1716eleq1d 2813 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑉𝑘 / 𝑗𝐶𝑉))
1815, 17imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐶𝑉) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)))
19 limsupequzmptf.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
2013, 18, 19chvarfv 2241 . . 3 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
21 limsupequzmptf.p . . . . . . 7 𝑗𝐵
2221nfcri 2883 . . . . . 6 𝑗 𝑘𝐵
236, 22nfan 1899 . . . . 5 𝑗(𝜑𝑘𝐵)
24 nfcv 2891 . . . . . 6 𝑗𝑊
2510, 24nfel 2906 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑊
2623, 25nfim 1896 . . . 4 𝑗((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
27 eleq1w 2811 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
2827anbi2d 630 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐵) ↔ (𝜑𝑘𝐵)))
2916eleq1d 2813 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑊𝑘 / 𝑗𝐶𝑊))
3028, 29imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐵) → 𝐶𝑊) ↔ ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)))
31 limsupequzmptf.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
3226, 30, 31chvarfv 2241 . . 3 ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
331, 2, 3, 4, 5, 20, 32limsupequzmpt 45700 . 2 (𝜑 → (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
34 nfcv 2891 . . . . 5 𝑘𝐴
35 nfcv 2891 . . . . 5 𝑘𝐶
367, 34, 35, 10, 16cbvmptf 5202 . . . 4 (𝑗𝐴𝐶) = (𝑘𝐴𝑘 / 𝑗𝐶)
3736fveq2i 6843 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶))
3837a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)))
39 nfcv 2891 . . . . 5 𝑘𝐵
4021, 39, 35, 10, 16cbvmptf 5202 . . . 4 (𝑗𝐵𝐶) = (𝑘𝐵𝑘 / 𝑗𝐶)
4140fveq2i 6843 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶))
4241a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
4333, 38, 423eqtr4d 2774 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  csb 3859  cmpt 5183  cfv 6499  cz 12505  cuz 12769  lim supclsp 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-ico 13288  df-limsup 15413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator