Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptf Structured version   Visualization version   GIF version

Theorem limsupequzmptf 42373
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptf.j 𝑗𝜑
limsupequzmptf.o 𝑗𝐴
limsupequzmptf.p 𝑗𝐵
limsupequzmptf.m (𝜑𝑀 ∈ ℤ)
limsupequzmptf.n (𝜑𝑁 ∈ ℤ)
limsupequzmptf.a 𝐴 = (ℤ𝑀)
limsupequzmptf.b 𝐵 = (ℤ𝑁)
limsupequzmptf.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptf.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmptf (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝑗,𝑉   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem limsupequzmptf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑘𝜑
2 limsupequzmptf.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupequzmptf.n . . 3 (𝜑𝑁 ∈ ℤ)
4 limsupequzmptf.a . . 3 𝐴 = (ℤ𝑀)
5 limsupequzmptf.b . . 3 𝐵 = (ℤ𝑁)
6 limsupequzmptf.j . . . . . 6 𝑗𝜑
7 limsupequzmptf.o . . . . . . 7 𝑗𝐴
87nfcri 2943 . . . . . 6 𝑗 𝑘𝐴
96, 8nfan 1900 . . . . 5 𝑗(𝜑𝑘𝐴)
10 nfcsb1v 3852 . . . . . 6 𝑗𝑘 / 𝑗𝐶
11 nfcv 2955 . . . . . 6 𝑗𝑉
1210, 11nfel 2969 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑉
139, 12nfim 1897 . . . 4 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
14 eleq1w 2872 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1514anbi2d 631 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
16 csbeq1a 3842 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑘 / 𝑗𝐶)
1716eleq1d 2874 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑉𝑘 / 𝑗𝐶𝑉))
1815, 17imbi12d 348 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐶𝑉) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)))
19 limsupequzmptf.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
2013, 18, 19chvarfv 2240 . . 3 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
21 limsupequzmptf.p . . . . . . 7 𝑗𝐵
2221nfcri 2943 . . . . . 6 𝑗 𝑘𝐵
236, 22nfan 1900 . . . . 5 𝑗(𝜑𝑘𝐵)
24 nfcv 2955 . . . . . 6 𝑗𝑊
2510, 24nfel 2969 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑊
2623, 25nfim 1897 . . . 4 𝑗((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
27 eleq1w 2872 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
2827anbi2d 631 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐵) ↔ (𝜑𝑘𝐵)))
2916eleq1d 2874 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑊𝑘 / 𝑗𝐶𝑊))
3028, 29imbi12d 348 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐵) → 𝐶𝑊) ↔ ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)))
31 limsupequzmptf.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
3226, 30, 31chvarfv 2240 . . 3 ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
331, 2, 3, 4, 5, 20, 32limsupequzmpt 42371 . 2 (𝜑 → (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
34 nfcv 2955 . . . . 5 𝑘𝐴
35 nfcv 2955 . . . . 5 𝑘𝐶
367, 34, 35, 10, 16cbvmptf 5129 . . . 4 (𝑗𝐴𝐶) = (𝑘𝐴𝑘 / 𝑗𝐶)
3736fveq2i 6648 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶))
3837a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)))
39 nfcv 2955 . . . . 5 𝑘𝐵
4021, 39, 35, 10, 16cbvmptf 5129 . . . 4 (𝑗𝐵𝐶) = (𝑘𝐵𝑘 / 𝑗𝐶)
4140fveq2i 6648 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶))
4241a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
4333, 38, 423eqtr4d 2843 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  csb 3828  cmpt 5110  cfv 6324  cz 11969  cuz 12231  lim supclsp 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ico 12732  df-limsup 14820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator