| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequzmptf | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupequzmptf.j | ⊢ Ⅎ𝑗𝜑 |
| limsupequzmptf.o | ⊢ Ⅎ𝑗𝐴 |
| limsupequzmptf.p | ⊢ Ⅎ𝑗𝐵 |
| limsupequzmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupequzmptf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| limsupequzmptf.a | ⊢ 𝐴 = (ℤ≥‘𝑀) |
| limsupequzmptf.b | ⊢ 𝐵 = (ℤ≥‘𝑁) |
| limsupequzmptf.c | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| limsupequzmptf.d | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| limsupequzmptf | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | limsupequzmptf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | limsupequzmptf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | limsupequzmptf.a | . . 3 ⊢ 𝐴 = (ℤ≥‘𝑀) | |
| 5 | limsupequzmptf.b | . . 3 ⊢ 𝐵 = (ℤ≥‘𝑁) | |
| 6 | limsupequzmptf.j | . . . . . 6 ⊢ Ⅎ𝑗𝜑 | |
| 7 | limsupequzmptf.o | . . . . . . 7 ⊢ Ⅎ𝑗𝐴 | |
| 8 | 7 | nfcri 2883 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐴 |
| 9 | 6, 8 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐴) |
| 10 | nfcsb1v 3875 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 | |
| 11 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑗𝑉 | |
| 12 | 10, 11 | nfel 2906 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉 |
| 13 | 9, 12 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
| 14 | eleq1w 2811 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
| 16 | csbeq1a 3865 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑘 / 𝑗⦌𝐶) | |
| 17 | 16 | eleq1d 2813 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑉 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉)) |
| 18 | 15, 17 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉))) |
| 19 | limsupequzmptf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 20 | 13, 18, 19 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
| 21 | limsupequzmptf.p | . . . . . . 7 ⊢ Ⅎ𝑗𝐵 | |
| 22 | 21 | nfcri 2883 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐵 |
| 23 | 6, 22 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐵) |
| 24 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑗𝑊 | |
| 25 | 10, 24 | nfel 2906 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊 |
| 26 | 23, 25 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
| 27 | eleq1w 2811 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) | |
| 28 | 27 | anbi2d 630 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐵) ↔ (𝜑 ∧ 𝑘 ∈ 𝐵))) |
| 29 | 16 | eleq1d 2813 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑊 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊)) |
| 30 | 28, 29 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊))) |
| 31 | limsupequzmptf.d | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) | |
| 32 | 26, 30, 31 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
| 33 | 1, 2, 3, 4, 5, 20, 32 | limsupequzmpt 45714 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 34 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 35 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 36 | 7, 34, 35, 10, 16 | cbvmptf 5192 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
| 37 | 36 | fveq2i 6825 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
| 38 | 37 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 39 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
| 40 | 21, 39, 35, 10, 16 | cbvmptf 5192 | . . . 4 ⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
| 41 | 40 | fveq2i 6825 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
| 42 | 41 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 43 | 33, 38, 42 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3851 ↦ cmpt 5173 ‘cfv 6482 ℤcz 12471 ℤ≥cuz 12735 lim supclsp 15377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-ico 13254 df-limsup 15378 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |