Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptf Structured version   Visualization version   GIF version

Theorem limsupequzmptf 45715
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptf.j 𝑗𝜑
limsupequzmptf.o 𝑗𝐴
limsupequzmptf.p 𝑗𝐵
limsupequzmptf.m (𝜑𝑀 ∈ ℤ)
limsupequzmptf.n (𝜑𝑁 ∈ ℤ)
limsupequzmptf.a 𝐴 = (ℤ𝑀)
limsupequzmptf.b 𝐵 = (ℤ𝑁)
limsupequzmptf.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptf.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmptf (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝑗,𝑉   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem limsupequzmptf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑘𝜑
2 limsupequzmptf.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupequzmptf.n . . 3 (𝜑𝑁 ∈ ℤ)
4 limsupequzmptf.a . . 3 𝐴 = (ℤ𝑀)
5 limsupequzmptf.b . . 3 𝐵 = (ℤ𝑁)
6 limsupequzmptf.j . . . . . 6 𝑗𝜑
7 limsupequzmptf.o . . . . . . 7 𝑗𝐴
87nfcri 2897 . . . . . 6 𝑗 𝑘𝐴
96, 8nfan 1899 . . . . 5 𝑗(𝜑𝑘𝐴)
10 nfcsb1v 3936 . . . . . 6 𝑗𝑘 / 𝑗𝐶
11 nfcv 2905 . . . . . 6 𝑗𝑉
1210, 11nfel 2920 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑉
139, 12nfim 1896 . . . 4 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
14 eleq1w 2824 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1514anbi2d 630 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
16 csbeq1a 3925 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑘 / 𝑗𝐶)
1716eleq1d 2826 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑉𝑘 / 𝑗𝐶𝑉))
1815, 17imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐶𝑉) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)))
19 limsupequzmptf.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
2013, 18, 19chvarfv 2240 . . 3 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
21 limsupequzmptf.p . . . . . . 7 𝑗𝐵
2221nfcri 2897 . . . . . 6 𝑗 𝑘𝐵
236, 22nfan 1899 . . . . 5 𝑗(𝜑𝑘𝐵)
24 nfcv 2905 . . . . . 6 𝑗𝑊
2510, 24nfel 2920 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑊
2623, 25nfim 1896 . . . 4 𝑗((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
27 eleq1w 2824 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
2827anbi2d 630 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐵) ↔ (𝜑𝑘𝐵)))
2916eleq1d 2826 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑊𝑘 / 𝑗𝐶𝑊))
3028, 29imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐵) → 𝐶𝑊) ↔ ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)))
31 limsupequzmptf.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
3226, 30, 31chvarfv 2240 . . 3 ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
331, 2, 3, 4, 5, 20, 32limsupequzmpt 45713 . 2 (𝜑 → (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
34 nfcv 2905 . . . . 5 𝑘𝐴
35 nfcv 2905 . . . . 5 𝑘𝐶
367, 34, 35, 10, 16cbvmptf 5260 . . . 4 (𝑗𝐴𝐶) = (𝑘𝐴𝑘 / 𝑗𝐶)
3736fveq2i 6917 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶))
3837a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)))
39 nfcv 2905 . . . . 5 𝑘𝐵
4021, 39, 35, 10, 16cbvmptf 5260 . . . 4 (𝑗𝐵𝐶) = (𝑘𝐵𝑘 / 𝑗𝐶)
4140fveq2i 6917 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶))
4241a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
4333, 38, 423eqtr4d 2787 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2108  wnfc 2890  csb 3911  cmpt 5234  cfv 6569  cz 12620  cuz 12885  lim supclsp 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-q 12998  df-ico 13399  df-limsup 15513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator