| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequzmptf | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupequzmptf.j | ⊢ Ⅎ𝑗𝜑 |
| limsupequzmptf.o | ⊢ Ⅎ𝑗𝐴 |
| limsupequzmptf.p | ⊢ Ⅎ𝑗𝐵 |
| limsupequzmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupequzmptf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| limsupequzmptf.a | ⊢ 𝐴 = (ℤ≥‘𝑀) |
| limsupequzmptf.b | ⊢ 𝐵 = (ℤ≥‘𝑁) |
| limsupequzmptf.c | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| limsupequzmptf.d | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| limsupequzmptf | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | limsupequzmptf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | limsupequzmptf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | limsupequzmptf.a | . . 3 ⊢ 𝐴 = (ℤ≥‘𝑀) | |
| 5 | limsupequzmptf.b | . . 3 ⊢ 𝐵 = (ℤ≥‘𝑁) | |
| 6 | limsupequzmptf.j | . . . . . 6 ⊢ Ⅎ𝑗𝜑 | |
| 7 | limsupequzmptf.o | . . . . . . 7 ⊢ Ⅎ𝑗𝐴 | |
| 8 | 7 | nfcri 2889 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐴 |
| 9 | 6, 8 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐴) |
| 10 | nfcsb1v 3903 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 | |
| 11 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑗𝑉 | |
| 12 | 10, 11 | nfel 2912 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉 |
| 13 | 9, 12 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
| 14 | eleq1w 2816 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
| 16 | csbeq1a 3893 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑘 / 𝑗⦌𝐶) | |
| 17 | 16 | eleq1d 2818 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑉 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉)) |
| 18 | 15, 17 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉))) |
| 19 | limsupequzmptf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 20 | 13, 18, 19 | chvarfv 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
| 21 | limsupequzmptf.p | . . . . . . 7 ⊢ Ⅎ𝑗𝐵 | |
| 22 | 21 | nfcri 2889 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐵 |
| 23 | 6, 22 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐵) |
| 24 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑗𝑊 | |
| 25 | 10, 24 | nfel 2912 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊 |
| 26 | 23, 25 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
| 27 | eleq1w 2816 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) | |
| 28 | 27 | anbi2d 630 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐵) ↔ (𝜑 ∧ 𝑘 ∈ 𝐵))) |
| 29 | 16 | eleq1d 2818 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑊 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊)) |
| 30 | 28, 29 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊))) |
| 31 | limsupequzmptf.d | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) | |
| 32 | 26, 30, 31 | chvarfv 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
| 33 | 1, 2, 3, 4, 5, 20, 32 | limsupequzmpt 45677 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 34 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 35 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 36 | 7, 34, 35, 10, 16 | cbvmptf 5231 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
| 37 | 36 | fveq2i 6888 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
| 38 | 37 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 39 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
| 40 | 21, 39, 35, 10, 16 | cbvmptf 5231 | . . . 4 ⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
| 41 | 40 | fveq2i 6888 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
| 42 | 41 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
| 43 | 33, 38, 42 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ⦋csb 3879 ↦ cmpt 5205 ‘cfv 6540 ℤcz 12595 ℤ≥cuz 12859 lim supclsp 15487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-q 12972 df-ico 13374 df-limsup 15488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |