![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequzmptf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupequzmptf.j | ⊢ Ⅎ𝑗𝜑 |
limsupequzmptf.o | ⊢ Ⅎ𝑗𝐴 |
limsupequzmptf.p | ⊢ Ⅎ𝑗𝐵 |
limsupequzmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupequzmptf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
limsupequzmptf.a | ⊢ 𝐴 = (ℤ≥‘𝑀) |
limsupequzmptf.b | ⊢ 𝐵 = (ℤ≥‘𝑁) |
limsupequzmptf.c | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
limsupequzmptf.d | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
limsupequzmptf | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | limsupequzmptf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupequzmptf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | limsupequzmptf.a | . . 3 ⊢ 𝐴 = (ℤ≥‘𝑀) | |
5 | limsupequzmptf.b | . . 3 ⊢ 𝐵 = (ℤ≥‘𝑁) | |
6 | limsupequzmptf.j | . . . . . 6 ⊢ Ⅎ𝑗𝜑 | |
7 | limsupequzmptf.o | . . . . . . 7 ⊢ Ⅎ𝑗𝐴 | |
8 | 7 | nfcri 2900 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐴 |
9 | 6, 8 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐴) |
10 | nfcsb1v 3946 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 | |
11 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑗𝑉 | |
12 | 10, 11 | nfel 2923 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉 |
13 | 9, 12 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
14 | eleq1w 2827 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
16 | csbeq1a 3935 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑘 / 𝑗⦌𝐶) | |
17 | 16 | eleq1d 2829 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑉 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉)) |
18 | 15, 17 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉))) |
19 | limsupequzmptf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
20 | 13, 18, 19 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑉) |
21 | limsupequzmptf.p | . . . . . . 7 ⊢ Ⅎ𝑗𝐵 | |
22 | 21 | nfcri 2900 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ 𝐵 |
23 | 6, 22 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐵) |
24 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑗𝑊 | |
25 | 10, 24 | nfel 2923 | . . . . 5 ⊢ Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊 |
26 | 23, 25 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
27 | eleq1w 2827 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) | |
28 | 27 | anbi2d 629 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐵) ↔ (𝜑 ∧ 𝑘 ∈ 𝐵))) |
29 | 16 | eleq1d 2829 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐶 ∈ 𝑊 ↔ ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊)) |
30 | 28, 29 | imbi12d 344 | . . . 4 ⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊))) |
31 | limsupequzmptf.d | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) | |
32 | 26, 30, 31 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ⦋𝑘 / 𝑗⦌𝐶 ∈ 𝑊) |
33 | 1, 2, 3, 4, 5, 20, 32 | limsupequzmpt 45652 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
34 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
35 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
36 | 7, 34, 35, 10, 16 | cbvmptf 5275 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
37 | 36 | fveq2i 6925 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
38 | 37 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
39 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
40 | 21, 39, 35, 10, 16 | cbvmptf 5275 | . . . 4 ⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶) |
41 | 40 | fveq2i 6925 | . . 3 ⊢ (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶)) |
42 | 41 | a1i 11 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑘 ∈ 𝐵 ↦ ⦋𝑘 / 𝑗⦌𝐶))) |
43 | 33, 38, 42 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ⦋csb 3921 ↦ cmpt 5249 ‘cfv 6575 ℤcz 12641 ℤ≥cuz 12905 lim supclsp 15518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-q 13016 df-ico 13415 df-limsup 15519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |