Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuz Structured version   Visualization version   GIF version

Theorem liminfreuz 45751
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuz.1 𝑗𝐹
liminfreuz.2 (𝜑𝑀 ∈ ℤ)
liminfreuz.3 𝑍 = (ℤ𝑀)
liminfreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuz (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2897 . . 3 𝑙𝐹
2 liminfreuz.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfreuz.3 . . 3 𝑍 = (ℤ𝑀)
4 liminfreuz.4 . . 3 (𝜑𝐹:𝑍⟶ℝ)
51, 2, 3, 4liminfreuzlem 45750 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙))))
6 breq2 5127 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
76rexbidv 3166 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
87ralbidv 3165 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
9 fveq2 6885 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
109rexeqdv 3310 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
11 liminfreuz.1 . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2897 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6895 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
14 nfcv 2897 . . . . . . . . . . . 12 𝑗
15 nfcv 2897 . . . . . . . . . . . 12 𝑗𝑥
1613, 14, 15nfbr 5170 . . . . . . . . . . 11 𝑗(𝐹𝑙) ≤ 𝑥
17 nfv 1913 . . . . . . . . . . 11 𝑙(𝐹𝑗) ≤ 𝑥
18 fveq2 6885 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq1d 5133 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
2016, 17, 19cbvrexw 3290 . . . . . . . . . 10 (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2120a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2210, 21bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2322cbvralvw 3223 . . . . . . 7 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2423a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
258, 24bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2625cbvrexvw 3224 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
27 breq1 5126 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
2827ralbidv 3165 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑙𝑍 𝑥 ≤ (𝐹𝑙)))
2915, 14, 13nfbr 5170 . . . . . . . 8 𝑗 𝑥 ≤ (𝐹𝑙)
30 nfv 1913 . . . . . . . 8 𝑙 𝑥 ≤ (𝐹𝑗)
3118breq2d 5135 . . . . . . . 8 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
3229, 30, 31cbvralw 3289 . . . . . . 7 (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3332a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3428, 33bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3534cbvrexvw 3224 . . . 4 (∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3626, 35anbi12i 628 . . 3 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3736a1i 11 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
385, 37bitrd 279 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  wrex 3059   class class class wbr 5123  wf 6536  cfv 6540  cr 11135  cle 11277  cz 12595  cuz 12859  lim infclsi 45699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-q 12972  df-xneg 13135  df-ico 13374  df-fz 13529  df-fzo 13676  df-fl 13813  df-ceil 13814  df-limsup 15488  df-liminf 45700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator