| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfreuz | Structured version Visualization version GIF version | ||
| Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfreuz.1 | ⊢ Ⅎ𝑗𝐹 |
| liminfreuz.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminfreuz.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminfreuz.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| liminfreuz | ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2893 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
| 2 | liminfreuz.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | liminfreuz.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | liminfreuz.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 5 | 1, 2, 3, 4 | liminfreuzlem 45773 | . 2 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)))) |
| 6 | breq2 5119 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
| 7 | 6 | rexbidv 3159 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
| 8 | 7 | ralbidv 3158 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
| 9 | fveq2 6865 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) = (ℤ≥‘𝑘)) | |
| 10 | 9 | rexeqdv 3303 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥)) |
| 11 | liminfreuz.1 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
| 12 | nfcv 2893 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
| 13 | 11, 12 | nffv 6875 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
| 14 | nfcv 2893 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
| 15 | nfcv 2893 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
| 16 | 13, 14, 15 | nfbr 5162 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
| 17 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 | |
| 18 | fveq2 6865 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
| 19 | 18 | breq1d 5125 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
| 20 | 16, 17, 19 | cbvrexw 3284 | . . . . . . . . . 10 ⊢ (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 22 | 10, 21 | bitrd 279 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 23 | 22 | cbvralvw 3217 | . . . . . . 7 ⊢ (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 25 | 8, 24 | bitrd 279 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 26 | 25 | cbvrexvw 3218 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 27 | breq1 5118 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑙))) | |
| 28 | 27 | ralbidv 3158 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙))) |
| 29 | 15, 14, 13 | nfbr 5162 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑙) |
| 30 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑙 𝑥 ≤ (𝐹‘𝑗) | |
| 31 | 18 | breq2d 5127 | . . . . . . . 8 ⊢ (𝑙 = 𝑗 → (𝑥 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
| 32 | 29, 30, 31 | cbvralw 3283 | . . . . . . 7 ⊢ (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 34 | 28, 33 | bitrd 279 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 35 | 34 | cbvrexvw 3218 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 36 | 26, 35 | anbi12i 628 | . . 3 ⊢ ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| 38 | 5, 37 | bitrd 279 | 1 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 ℝcr 11085 ≤ cle 11227 ℤcz 12545 ℤ≥cuz 12809 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-xneg 13085 df-ico 13325 df-fz 13482 df-fzo 13629 df-fl 13766 df-ceil 13767 df-limsup 15444 df-liminf 45723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |