![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfreuz | Structured version Visualization version GIF version |
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfreuz.1 | ⊢ Ⅎ𝑗𝐹 |
liminfreuz.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfreuz.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfreuz.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
liminfreuz | ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | liminfreuz.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | liminfreuz.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | liminfreuz.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
5 | 1, 2, 3, 4 | liminfreuzlem 45786 | . 2 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)))) |
6 | breq2 5155 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
7 | 6 | rexbidv 3179 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
8 | 7 | ralbidv 3178 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
9 | fveq2 6914 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) = (ℤ≥‘𝑘)) | |
10 | 9 | rexeqdv 3327 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥)) |
11 | liminfreuz.1 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2905 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6924 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
15 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
16 | 13, 14, 15 | nfbr 5198 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
17 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 | |
18 | fveq2 6914 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq1d 5161 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
20 | 16, 17, 19 | cbvrexw 3307 | . . . . . . . . . 10 ⊢ (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
22 | 10, 21 | bitrd 279 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
23 | 22 | cbvralvw 3237 | . . . . . . 7 ⊢ (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
25 | 8, 24 | bitrd 279 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
27 | breq1 5154 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑙))) | |
28 | 27 | ralbidv 3178 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙))) |
29 | 15, 14, 13 | nfbr 5198 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑙) |
30 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑙 𝑥 ≤ (𝐹‘𝑗) | |
31 | 18 | breq2d 5163 | . . . . . . . 8 ⊢ (𝑙 = 𝑗 → (𝑥 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 29, 30, 31 | cbvralw 3306 | . . . . . . 7 ⊢ (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
34 | 28, 33 | bitrd 279 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
35 | 34 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
36 | 26, 35 | anbi12i 628 | . . 3 ⊢ ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
38 | 5, 37 | bitrd 279 | 1 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2890 ∀wral 3061 ∃wrex 3070 class class class wbr 5151 ⟶wf 6565 ‘cfv 6569 ℝcr 11161 ≤ cle 11303 ℤcz 12620 ℤ≥cuz 12885 lim infclsi 45735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-xneg 13161 df-ico 13399 df-fz 13554 df-fzo 13701 df-fl 13838 df-ceil 13839 df-limsup 15513 df-liminf 45736 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |