Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfreuz | Structured version Visualization version GIF version |
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfreuz.1 | ⊢ Ⅎ𝑗𝐹 |
liminfreuz.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfreuz.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfreuz.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
liminfreuz | ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | liminfreuz.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | liminfreuz.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | liminfreuz.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
5 | 1, 2, 3, 4 | liminfreuzlem 43233 | . 2 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)))) |
6 | breq2 5074 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
7 | 6 | rexbidv 3225 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
8 | 7 | ralbidv 3120 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
9 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) = (ℤ≥‘𝑘)) | |
10 | 9 | rexeqdv 3340 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥)) |
11 | liminfreuz.1 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2906 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6766 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | nfcv 2906 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
15 | nfcv 2906 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
16 | 13, 14, 15 | nfbr 5117 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
17 | nfv 1918 | . . . . . . . . . . 11 ⊢ Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 | |
18 | fveq2 6756 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq1d 5080 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
20 | 16, 17, 19 | cbvrexw 3364 | . . . . . . . . . 10 ⊢ (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
22 | 10, 21 | bitrd 278 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
23 | 22 | cbvralvw 3372 | . . . . . . 7 ⊢ (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
25 | 8, 24 | bitrd 278 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | cbvrexvw 3373 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
27 | breq1 5073 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑙))) | |
28 | 27 | ralbidv 3120 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙))) |
29 | 15, 14, 13 | nfbr 5117 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑙) |
30 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑙 𝑥 ≤ (𝐹‘𝑗) | |
31 | 18 | breq2d 5082 | . . . . . . . 8 ⊢ (𝑙 = 𝑗 → (𝑥 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 29, 30, 31 | cbvralw 3363 | . . . . . . 7 ⊢ (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
34 | 28, 33 | bitrd 278 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
35 | 34 | cbvrexvw 3373 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
36 | 26, 35 | anbi12i 626 | . . 3 ⊢ ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
38 | 5, 37 | bitrd 278 | 1 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 ℝcr 10801 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 lim infclsi 43182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-xneg 12777 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-ceil 13441 df-limsup 15108 df-liminf 43183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |