Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuz Structured version   Visualization version   GIF version

Theorem liminfreuz 45787
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuz.1 𝑗𝐹
liminfreuz.2 (𝜑𝑀 ∈ ℤ)
liminfreuz.3 𝑍 = (ℤ𝑀)
liminfreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuz (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . 3 𝑙𝐹
2 liminfreuz.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfreuz.3 . . 3 𝑍 = (ℤ𝑀)
4 liminfreuz.4 . . 3 (𝜑𝐹:𝑍⟶ℝ)
51, 2, 3, 4liminfreuzlem 45786 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙))))
6 breq2 5155 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
76rexbidv 3179 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
87ralbidv 3178 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
9 fveq2 6914 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
109rexeqdv 3327 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
11 liminfreuz.1 . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2905 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6924 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
14 nfcv 2905 . . . . . . . . . . . 12 𝑗
15 nfcv 2905 . . . . . . . . . . . 12 𝑗𝑥
1613, 14, 15nfbr 5198 . . . . . . . . . . 11 𝑗(𝐹𝑙) ≤ 𝑥
17 nfv 1914 . . . . . . . . . . 11 𝑙(𝐹𝑗) ≤ 𝑥
18 fveq2 6914 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq1d 5161 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
2016, 17, 19cbvrexw 3307 . . . . . . . . . 10 (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2120a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2210, 21bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2322cbvralvw 3237 . . . . . . 7 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2423a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
258, 24bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2625cbvrexvw 3238 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
27 breq1 5154 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
2827ralbidv 3178 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑙𝑍 𝑥 ≤ (𝐹𝑙)))
2915, 14, 13nfbr 5198 . . . . . . . 8 𝑗 𝑥 ≤ (𝐹𝑙)
30 nfv 1914 . . . . . . . 8 𝑙 𝑥 ≤ (𝐹𝑗)
3118breq2d 5163 . . . . . . . 8 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
3229, 30, 31cbvralw 3306 . . . . . . 7 (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3332a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3428, 33bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3534cbvrexvw 3238 . . . 4 (∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3626, 35anbi12i 628 . . 3 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3736a1i 11 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
385, 37bitrd 279 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wnfc 2890  wral 3061  wrex 3070   class class class wbr 5151  wf 6565  cfv 6569  cr 11161  cle 11303  cz 12620  cuz 12885  lim infclsi 45735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-q 12998  df-xneg 13161  df-ico 13399  df-fz 13554  df-fzo 13701  df-fl 13838  df-ceil 13839  df-limsup 15513  df-liminf 45736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator