Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfreuz | Structured version Visualization version GIF version |
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfreuz.1 | ⊢ Ⅎ𝑗𝐹 |
liminfreuz.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfreuz.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfreuz.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
liminfreuz | ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | liminfreuz.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | liminfreuz.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | liminfreuz.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
5 | 1, 2, 3, 4 | liminfreuzlem 43018 | . 2 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)))) |
6 | breq2 5057 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
7 | 6 | rexbidv 3216 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
8 | 7 | ralbidv 3118 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
9 | fveq2 6717 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) = (ℤ≥‘𝑘)) | |
10 | 9 | rexeqdv 3326 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥)) |
11 | liminfreuz.1 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2904 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6727 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
15 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
16 | 13, 14, 15 | nfbr 5100 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
17 | nfv 1922 | . . . . . . . . . . 11 ⊢ Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 | |
18 | fveq2 6717 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq1d 5063 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
20 | 16, 17, 19 | cbvrexw 3350 | . . . . . . . . . 10 ⊢ (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
22 | 10, 21 | bitrd 282 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
23 | 22 | cbvralvw 3358 | . . . . . . 7 ⊢ (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
25 | 8, 24 | bitrd 282 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | cbvrexvw 3359 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
27 | breq1 5056 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑙))) | |
28 | 27 | ralbidv 3118 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙))) |
29 | 15, 14, 13 | nfbr 5100 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑙) |
30 | nfv 1922 | . . . . . . . 8 ⊢ Ⅎ𝑙 𝑥 ≤ (𝐹‘𝑗) | |
31 | 18 | breq2d 5065 | . . . . . . . 8 ⊢ (𝑙 = 𝑗 → (𝑥 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 29, 30, 31 | cbvralw 3349 | . . . . . . 7 ⊢ (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
34 | 28, 33 | bitrd 282 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
35 | 34 | cbvrexvw 3359 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
36 | 26, 35 | anbi12i 630 | . . 3 ⊢ ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
38 | 5, 37 | bitrd 282 | 1 ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 ℝcr 10728 ≤ cle 10868 ℤcz 12176 ℤ≥cuz 12438 lim infclsi 42967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-xneg 12704 df-ico 12941 df-fz 13096 df-fzo 13239 df-fl 13367 df-ceil 13368 df-limsup 15032 df-liminf 42968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |