| Step | Hyp | Ref
| Expression |
| 1 | | caucvgbf.3 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | 1 | caucvgb 15698 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥))) |
| 3 | | nfcv 2897 |
. . . . 5
⊢
Ⅎ𝑗(ℤ≥‘𝑖) |
| 4 | | caucvgbf.1 |
. . . . . . . 8
⊢
Ⅎ𝑗𝐹 |
| 5 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑗𝑙 |
| 6 | 4, 5 | nffv 6896 |
. . . . . . 7
⊢
Ⅎ𝑗(𝐹‘𝑙) |
| 7 | 6 | nfel1 2914 |
. . . . . 6
⊢
Ⅎ𝑗(𝐹‘𝑙) ∈ ℂ |
| 8 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑗abs |
| 9 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑗
− |
| 10 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑖 |
| 11 | 4, 10 | nffv 6896 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝐹‘𝑖) |
| 12 | 6, 9, 11 | nfov 7443 |
. . . . . . . 8
⊢
Ⅎ𝑗((𝐹‘𝑙) − (𝐹‘𝑖)) |
| 13 | 8, 12 | nffv 6896 |
. . . . . . 7
⊢
Ⅎ𝑗(abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) |
| 14 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑗
< |
| 15 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑗𝑥 |
| 16 | 13, 14, 15 | nfbr 5170 |
. . . . . 6
⊢
Ⅎ𝑗(abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥 |
| 17 | 7, 16 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑗((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) |
| 18 | 3, 17 | nfralw 3294 |
. . . 4
⊢
Ⅎ𝑗∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) |
| 19 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑖∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| 20 | | caucvgbf.2 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐹 |
| 21 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑙 |
| 22 | 20, 21 | nffv 6896 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝐹‘𝑙) |
| 23 | 22 | nfel1 2914 |
. . . . . . 7
⊢
Ⅎ𝑘(𝐹‘𝑙) ∈ ℂ |
| 24 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑘abs |
| 25 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑘
− |
| 26 | | nfcv 2897 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝑖 |
| 27 | 20, 26 | nffv 6896 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝐹‘𝑖) |
| 28 | 22, 25, 27 | nfov 7443 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝐹‘𝑙) − (𝐹‘𝑖)) |
| 29 | 24, 28 | nffv 6896 |
. . . . . . . 8
⊢
Ⅎ𝑘(abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) |
| 30 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑘
< |
| 31 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑥 |
| 32 | 29, 30, 31 | nfbr 5170 |
. . . . . . 7
⊢
Ⅎ𝑘(abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥 |
| 33 | 23, 32 | nfan 1898 |
. . . . . 6
⊢
Ⅎ𝑘((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) |
| 34 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑙((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥) |
| 35 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) |
| 36 | 35 | eleq1d 2818 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) ∈ ℂ ↔ (𝐹‘𝑘) ∈ ℂ)) |
| 37 | 35 | fvoveq1d 7435 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑖)))) |
| 38 | 37 | breq1d 5133 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → ((abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥)) |
| 39 | 36, 38 | anbi12d 632 |
. . . . . 6
⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥))) |
| 40 | 33, 34, 39 | cbvralw 3289 |
. . . . 5
⊢
(∀𝑙 ∈
(ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥)) |
| 41 | | fveq2 6886 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑗)) |
| 42 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐹‘𝑖) = (𝐹‘𝑗)) |
| 43 | 42 | oveq2d 7429 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝐹‘𝑘) − (𝐹‘𝑖)) = ((𝐹‘𝑘) − (𝐹‘𝑗))) |
| 44 | 43 | fveq2d 6890 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 45 | 44 | breq1d 5133 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 46 | 45 | anbi2d 630 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 47 | 41, 46 | raleqbidv 3329 |
. . . . 5
⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 48 | 40, 47 | bitrid 283 |
. . . 4
⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 49 | 18, 19, 48 | cbvrexw 3290 |
. . 3
⊢
(∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 50 | 49 | ralbii 3081 |
. 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) ∈ ℂ ∧ (abs‘((𝐹‘𝑙) − (𝐹‘𝑖))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 51 | 2, 50 | bitrdi 287 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |