Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caucvgbf Structured version   Visualization version   GIF version

Theorem caucvgbf 44795
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
caucvgbf.1 𝑗𝐹
caucvgbf.2 𝑘𝐹
caucvgbf.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgbf ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥   𝑥,𝑘,𝑗
Allowed substitution hints:   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem caucvgbf
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgbf.3 . . 3 𝑍 = (ℤ𝑀)
21caucvgb 15650 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)))
3 nfcv 2898 . . . . 5 𝑗(ℤ𝑖)
4 caucvgbf.1 . . . . . . . 8 𝑗𝐹
5 nfcv 2898 . . . . . . . 8 𝑗𝑙
64, 5nffv 6901 . . . . . . 7 𝑗(𝐹𝑙)
76nfel1 2914 . . . . . 6 𝑗(𝐹𝑙) ∈ ℂ
8 nfcv 2898 . . . . . . . 8 𝑗abs
9 nfcv 2898 . . . . . . . . 9 𝑗
10 nfcv 2898 . . . . . . . . . 10 𝑗𝑖
114, 10nffv 6901 . . . . . . . . 9 𝑗(𝐹𝑖)
126, 9, 11nfov 7444 . . . . . . . 8 𝑗((𝐹𝑙) − (𝐹𝑖))
138, 12nffv 6901 . . . . . . 7 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖)))
14 nfcv 2898 . . . . . . 7 𝑗 <
15 nfcv 2898 . . . . . . 7 𝑗𝑥
1613, 14, 15nfbr 5189 . . . . . 6 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
177, 16nfan 1895 . . . . 5 𝑗((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
183, 17nfralw 3303 . . . 4 𝑗𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
19 nfv 1910 . . . 4 𝑖𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
20 caucvgbf.2 . . . . . . . . 9 𝑘𝐹
21 nfcv 2898 . . . . . . . . 9 𝑘𝑙
2220, 21nffv 6901 . . . . . . . 8 𝑘(𝐹𝑙)
2322nfel1 2914 . . . . . . 7 𝑘(𝐹𝑙) ∈ ℂ
24 nfcv 2898 . . . . . . . . 9 𝑘abs
25 nfcv 2898 . . . . . . . . . 10 𝑘
26 nfcv 2898 . . . . . . . . . . 11 𝑘𝑖
2720, 26nffv 6901 . . . . . . . . . 10 𝑘(𝐹𝑖)
2822, 25, 27nfov 7444 . . . . . . . . 9 𝑘((𝐹𝑙) − (𝐹𝑖))
2924, 28nffv 6901 . . . . . . . 8 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖)))
30 nfcv 2898 . . . . . . . 8 𝑘 <
31 nfcv 2898 . . . . . . . 8 𝑘𝑥
3229, 30, 31nfbr 5189 . . . . . . 7 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
3323, 32nfan 1895 . . . . . 6 𝑘((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
34 nfv 1910 . . . . . 6 𝑙((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)
35 fveq2 6891 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
3635eleq1d 2813 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
3735fvoveq1d 7436 . . . . . . . 8 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑖))))
3837breq1d 5152 . . . . . . 7 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
3936, 38anbi12d 630 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)))
4033, 34, 39cbvralw 3298 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
41 fveq2 6891 . . . . . 6 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
42 fveq2 6891 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
4342oveq2d 7430 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐹𝑘) − (𝐹𝑖)) = ((𝐹𝑘) − (𝐹𝑗)))
4443fveq2d 6895 . . . . . . . 8 (𝑖 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
4544breq1d 5152 . . . . . . 7 (𝑖 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645anbi2d 628 . . . . . 6 (𝑖 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4741, 46raleqbidv 3337 . . . . 5 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4840, 47bitrid 283 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4918, 19, 48cbvrexw 3299 . . 3 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5049ralbii 3088 . 2 (∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
512, 50bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wnfc 2878  wral 3056  wrex 3065   class class class wbr 5142  dom cdm 5672  cfv 6542  (class class class)co 7414  cc 11128   < clt 11270  cmin 11466  cz 12580  cuz 12844  +crp 12998  abscabs 15205  cli 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-ico 13354  df-fl 13781  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457
This theorem is referenced by:  cvgcau  44796
  Copyright terms: Public domain W3C validator