Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caucvgbf Structured version   Visualization version   GIF version

Theorem caucvgbf 45469
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
caucvgbf.1 𝑗𝐹
caucvgbf.2 𝑘𝐹
caucvgbf.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgbf ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥   𝑥,𝑘,𝑗
Allowed substitution hints:   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem caucvgbf
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgbf.3 . . 3 𝑍 = (ℤ𝑀)
21caucvgb 15722 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)))
3 nfcv 2905 . . . . 5 𝑗(ℤ𝑖)
4 caucvgbf.1 . . . . . . . 8 𝑗𝐹
5 nfcv 2905 . . . . . . . 8 𝑗𝑙
64, 5nffv 6924 . . . . . . 7 𝑗(𝐹𝑙)
76nfel1 2922 . . . . . 6 𝑗(𝐹𝑙) ∈ ℂ
8 nfcv 2905 . . . . . . . 8 𝑗abs
9 nfcv 2905 . . . . . . . . 9 𝑗
10 nfcv 2905 . . . . . . . . . 10 𝑗𝑖
114, 10nffv 6924 . . . . . . . . 9 𝑗(𝐹𝑖)
126, 9, 11nfov 7468 . . . . . . . 8 𝑗((𝐹𝑙) − (𝐹𝑖))
138, 12nffv 6924 . . . . . . 7 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖)))
14 nfcv 2905 . . . . . . 7 𝑗 <
15 nfcv 2905 . . . . . . 7 𝑗𝑥
1613, 14, 15nfbr 5198 . . . . . 6 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
177, 16nfan 1899 . . . . 5 𝑗((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
183, 17nfralw 3311 . . . 4 𝑗𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
19 nfv 1914 . . . 4 𝑖𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
20 caucvgbf.2 . . . . . . . . 9 𝑘𝐹
21 nfcv 2905 . . . . . . . . 9 𝑘𝑙
2220, 21nffv 6924 . . . . . . . 8 𝑘(𝐹𝑙)
2322nfel1 2922 . . . . . . 7 𝑘(𝐹𝑙) ∈ ℂ
24 nfcv 2905 . . . . . . . . 9 𝑘abs
25 nfcv 2905 . . . . . . . . . 10 𝑘
26 nfcv 2905 . . . . . . . . . . 11 𝑘𝑖
2720, 26nffv 6924 . . . . . . . . . 10 𝑘(𝐹𝑖)
2822, 25, 27nfov 7468 . . . . . . . . 9 𝑘((𝐹𝑙) − (𝐹𝑖))
2924, 28nffv 6924 . . . . . . . 8 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖)))
30 nfcv 2905 . . . . . . . 8 𝑘 <
31 nfcv 2905 . . . . . . . 8 𝑘𝑥
3229, 30, 31nfbr 5198 . . . . . . 7 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
3323, 32nfan 1899 . . . . . 6 𝑘((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
34 nfv 1914 . . . . . 6 𝑙((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)
35 fveq2 6914 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
3635eleq1d 2826 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
3735fvoveq1d 7460 . . . . . . . 8 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑖))))
3837breq1d 5161 . . . . . . 7 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
3936, 38anbi12d 632 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)))
4033, 34, 39cbvralw 3306 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
41 fveq2 6914 . . . . . 6 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
42 fveq2 6914 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
4342oveq2d 7454 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐹𝑘) − (𝐹𝑖)) = ((𝐹𝑘) − (𝐹𝑗)))
4443fveq2d 6918 . . . . . . . 8 (𝑖 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
4544breq1d 5161 . . . . . . 7 (𝑖 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645anbi2d 630 . . . . . 6 (𝑖 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4741, 46raleqbidv 3346 . . . . 5 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4840, 47bitrid 283 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4918, 19, 48cbvrexw 3307 . . 3 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5049ralbii 3093 . 2 (∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
512, 50bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wnfc 2890  wral 3061  wrex 3070   class class class wbr 5151  dom cdm 5693  cfv 6569  (class class class)co 7438  cc 11160   < clt 11302  cmin 11499  cz 12620  cuz 12885  +crp 13041  abscabs 15279  cli 15526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-pm 8877  df-en 8994  df-dom 8995  df-sdom 8996  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-ico 13399  df-fl 13838  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531
This theorem is referenced by:  cvgcau  45470
  Copyright terms: Public domain W3C validator