Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caucvgbf Structured version   Visualization version   GIF version

Theorem caucvgbf 45469
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
caucvgbf.1 𝑗𝐹
caucvgbf.2 𝑘𝐹
caucvgbf.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgbf ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥   𝑥,𝑘,𝑗
Allowed substitution hints:   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem caucvgbf
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgbf.3 . . 3 𝑍 = (ℤ𝑀)
21caucvgb 15605 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)))
3 nfcv 2891 . . . . 5 𝑗(ℤ𝑖)
4 caucvgbf.1 . . . . . . . 8 𝑗𝐹
5 nfcv 2891 . . . . . . . 8 𝑗𝑙
64, 5nffv 6836 . . . . . . 7 𝑗(𝐹𝑙)
76nfel1 2908 . . . . . 6 𝑗(𝐹𝑙) ∈ ℂ
8 nfcv 2891 . . . . . . . 8 𝑗abs
9 nfcv 2891 . . . . . . . . 9 𝑗
10 nfcv 2891 . . . . . . . . . 10 𝑗𝑖
114, 10nffv 6836 . . . . . . . . 9 𝑗(𝐹𝑖)
126, 9, 11nfov 7383 . . . . . . . 8 𝑗((𝐹𝑙) − (𝐹𝑖))
138, 12nffv 6836 . . . . . . 7 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖)))
14 nfcv 2891 . . . . . . 7 𝑗 <
15 nfcv 2891 . . . . . . 7 𝑗𝑥
1613, 14, 15nfbr 5142 . . . . . 6 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
177, 16nfan 1899 . . . . 5 𝑗((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
183, 17nfralw 3277 . . . 4 𝑗𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
19 nfv 1914 . . . 4 𝑖𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
20 caucvgbf.2 . . . . . . . . 9 𝑘𝐹
21 nfcv 2891 . . . . . . . . 9 𝑘𝑙
2220, 21nffv 6836 . . . . . . . 8 𝑘(𝐹𝑙)
2322nfel1 2908 . . . . . . 7 𝑘(𝐹𝑙) ∈ ℂ
24 nfcv 2891 . . . . . . . . 9 𝑘abs
25 nfcv 2891 . . . . . . . . . 10 𝑘
26 nfcv 2891 . . . . . . . . . . 11 𝑘𝑖
2720, 26nffv 6836 . . . . . . . . . 10 𝑘(𝐹𝑖)
2822, 25, 27nfov 7383 . . . . . . . . 9 𝑘((𝐹𝑙) − (𝐹𝑖))
2924, 28nffv 6836 . . . . . . . 8 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖)))
30 nfcv 2891 . . . . . . . 8 𝑘 <
31 nfcv 2891 . . . . . . . 8 𝑘𝑥
3229, 30, 31nfbr 5142 . . . . . . 7 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
3323, 32nfan 1899 . . . . . 6 𝑘((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
34 nfv 1914 . . . . . 6 𝑙((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)
35 fveq2 6826 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
3635eleq1d 2813 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
3735fvoveq1d 7375 . . . . . . . 8 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑖))))
3837breq1d 5105 . . . . . . 7 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
3936, 38anbi12d 632 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)))
4033, 34, 39cbvralw 3272 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
41 fveq2 6826 . . . . . 6 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
42 fveq2 6826 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
4342oveq2d 7369 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐹𝑘) − (𝐹𝑖)) = ((𝐹𝑘) − (𝐹𝑗)))
4443fveq2d 6830 . . . . . . . 8 (𝑖 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
4544breq1d 5105 . . . . . . 7 (𝑖 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645anbi2d 630 . . . . . 6 (𝑖 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4741, 46raleqbidv 3310 . . . . 5 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4840, 47bitrid 283 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4918, 19, 48cbvrexw 3273 . . 3 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5049ralbii 3075 . 2 (∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
512, 50bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  cc 11026   < clt 11168  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414
This theorem is referenced by:  cvgcau  45470
  Copyright terms: Public domain W3C validator