Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caucvgbf Structured version   Visualization version   GIF version

Theorem caucvgbf 45533
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
caucvgbf.1 𝑗𝐹
caucvgbf.2 𝑘𝐹
caucvgbf.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgbf ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥   𝑥,𝑘,𝑗
Allowed substitution hints:   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem caucvgbf
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgbf.3 . . 3 𝑍 = (ℤ𝑀)
21caucvgb 15587 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)))
3 nfcv 2894 . . . . 5 𝑗(ℤ𝑖)
4 caucvgbf.1 . . . . . . . 8 𝑗𝐹
5 nfcv 2894 . . . . . . . 8 𝑗𝑙
64, 5nffv 6832 . . . . . . 7 𝑗(𝐹𝑙)
76nfel1 2911 . . . . . 6 𝑗(𝐹𝑙) ∈ ℂ
8 nfcv 2894 . . . . . . . 8 𝑗abs
9 nfcv 2894 . . . . . . . . 9 𝑗
10 nfcv 2894 . . . . . . . . . 10 𝑗𝑖
114, 10nffv 6832 . . . . . . . . 9 𝑗(𝐹𝑖)
126, 9, 11nfov 7376 . . . . . . . 8 𝑗((𝐹𝑙) − (𝐹𝑖))
138, 12nffv 6832 . . . . . . 7 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖)))
14 nfcv 2894 . . . . . . 7 𝑗 <
15 nfcv 2894 . . . . . . 7 𝑗𝑥
1613, 14, 15nfbr 5138 . . . . . 6 𝑗(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
177, 16nfan 1900 . . . . 5 𝑗((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
183, 17nfralw 3279 . . . 4 𝑗𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
19 nfv 1915 . . . 4 𝑖𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
20 caucvgbf.2 . . . . . . . . 9 𝑘𝐹
21 nfcv 2894 . . . . . . . . 9 𝑘𝑙
2220, 21nffv 6832 . . . . . . . 8 𝑘(𝐹𝑙)
2322nfel1 2911 . . . . . . 7 𝑘(𝐹𝑙) ∈ ℂ
24 nfcv 2894 . . . . . . . . 9 𝑘abs
25 nfcv 2894 . . . . . . . . . 10 𝑘
26 nfcv 2894 . . . . . . . . . . 11 𝑘𝑖
2720, 26nffv 6832 . . . . . . . . . 10 𝑘(𝐹𝑖)
2822, 25, 27nfov 7376 . . . . . . . . 9 𝑘((𝐹𝑙) − (𝐹𝑖))
2924, 28nffv 6832 . . . . . . . 8 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖)))
30 nfcv 2894 . . . . . . . 8 𝑘 <
31 nfcv 2894 . . . . . . . 8 𝑘𝑥
3229, 30, 31nfbr 5138 . . . . . . 7 𝑘(abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥
3323, 32nfan 1900 . . . . . 6 𝑘((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥)
34 nfv 1915 . . . . . 6 𝑙((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)
35 fveq2 6822 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
3635eleq1d 2816 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
3735fvoveq1d 7368 . . . . . . . 8 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑖))))
3837breq1d 5101 . . . . . . 7 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
3936, 38anbi12d 632 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥)))
4033, 34, 39cbvralw 3274 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥))
41 fveq2 6822 . . . . . 6 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
42 fveq2 6822 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
4342oveq2d 7362 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐹𝑘) − (𝐹𝑖)) = ((𝐹𝑘) − (𝐹𝑗)))
4443fveq2d 6826 . . . . . . . 8 (𝑖 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑖))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
4544breq1d 5101 . . . . . . 7 (𝑖 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645anbi2d 630 . . . . . 6 (𝑖 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4741, 46raleqbidv 3312 . . . . 5 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4840, 47bitrid 283 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4918, 19, 48cbvrexw 3275 . . 3 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5049ralbii 3078 . 2 (∀𝑥 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) ∈ ℂ ∧ (abs‘((𝐹𝑙) − (𝐹𝑖))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
512, 50bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056   class class class wbr 5091  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11004   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396
This theorem is referenced by:  cvgcau  45534
  Copyright terms: Public domain W3C validator