Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnf Structured version   Visualization version   GIF version

Theorem limsuppnf 45682
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnf.j 𝑗𝐹
limsuppnf.a (𝜑𝐴 ⊆ ℝ)
limsuppnf.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnf (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2893 . . 3 𝑙𝐹
2 limsuppnf.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsuppnf.f . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsuppnflem 45681 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
5 breq1 5118 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
65anbi1d 631 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
76rexbidv 3159 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
8 nfv 1914 . . . . . . . . . . 11 𝑗 𝑘𝑙
9 nfcv 2893 . . . . . . . . . . . 12 𝑗𝑦
10 nfcv 2893 . . . . . . . . . . . 12 𝑗
11 limsuppnf.j . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2893 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6875 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
149, 10, 13nfbr 5162 . . . . . . . . . . 11 𝑗 𝑦 ≤ (𝐹𝑙)
158, 14nfan 1899 . . . . . . . . . 10 𝑗(𝑘𝑙𝑦 ≤ (𝐹𝑙))
16 nfv 1914 . . . . . . . . . 10 𝑙(𝑘𝑗𝑦 ≤ (𝐹𝑗))
17 breq2 5119 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
18 fveq2 6865 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq2d 5127 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ (𝐹𝑗)))
2017, 19anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2115, 16, 20cbvrexw 3284 . . . . . . . . 9 (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2221a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
237, 22bitrd 279 . . . . . . 7 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423cbvralvw 3217 . . . . . 6 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2524a1i 11 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
26 breq1 5118 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑥 ≤ (𝐹𝑗)))
2726anbi2d 630 . . . . . . 7 (𝑦 = 𝑥 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827rexbidv 3159 . . . . . 6 (𝑦 = 𝑥 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2928ralbidv 3158 . . . . 5 (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3025, 29bitrd 279 . . . 4 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvralvw 3217 . . 3 (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
3231a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
334, 32bitrd 279 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2878  wral 3046  wrex 3055  wss 3922   class class class wbr 5115  wf 6515  cfv 6519  cr 11085  +∞cpnf 11223  *cxr 11225  cle 11227  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-inf 9412  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-ico 13325  df-limsup 15444
This theorem is referenced by:  limsupre2lem  45695
  Copyright terms: Public domain W3C validator