Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnf Structured version   Visualization version   GIF version

Theorem limsuppnf 43142
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnf.j 𝑗𝐹
limsuppnf.a (𝜑𝐴 ⊆ ℝ)
limsuppnf.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnf (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . 3 𝑙𝐹
2 limsuppnf.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsuppnf.f . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsuppnflem 43141 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
5 breq1 5073 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
65anbi1d 629 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
76rexbidv 3225 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
8 nfv 1918 . . . . . . . . . . 11 𝑗 𝑘𝑙
9 nfcv 2906 . . . . . . . . . . . 12 𝑗𝑦
10 nfcv 2906 . . . . . . . . . . . 12 𝑗
11 limsuppnf.j . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2906 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6766 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
149, 10, 13nfbr 5117 . . . . . . . . . . 11 𝑗 𝑦 ≤ (𝐹𝑙)
158, 14nfan 1903 . . . . . . . . . 10 𝑗(𝑘𝑙𝑦 ≤ (𝐹𝑙))
16 nfv 1918 . . . . . . . . . 10 𝑙(𝑘𝑗𝑦 ≤ (𝐹𝑗))
17 breq2 5074 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
18 fveq2 6756 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq2d 5082 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ (𝐹𝑗)))
2017, 19anbi12d 630 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2115, 16, 20cbvrexw 3364 . . . . . . . . 9 (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2221a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
237, 22bitrd 278 . . . . . . 7 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423cbvralvw 3372 . . . . . 6 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2524a1i 11 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
26 breq1 5073 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑥 ≤ (𝐹𝑗)))
2726anbi2d 628 . . . . . . 7 (𝑦 = 𝑥 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827rexbidv 3225 . . . . . 6 (𝑦 = 𝑥 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2928ralbidv 3120 . . . . 5 (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3025, 29bitrd 278 . . . 4 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvralvw 3372 . . 3 (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
3231a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
334, 32bitrd 278 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnfc 2886  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  cr 10801  +∞cpnf 10937  *cxr 10939  cle 10941  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014  df-limsup 15108
This theorem is referenced by:  limsupre2lem  43155
  Copyright terms: Public domain W3C validator