Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnf | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnf.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsuppnf | ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | limsuppnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | limsuppnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
4 | 1, 2, 3 | limsuppnflem 43596 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
5 | breq1 5095 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
6 | 5 | anbi1d 630 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
7 | 6 | rexbidv 3171 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
8 | nfv 1916 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
9 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
10 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
11 | limsuppnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2904 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6835 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | 9, 10, 13 | nfbr 5139 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
15 | 8, 14 | nfan 1901 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
16 | nfv 1916 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
17 | breq2 5096 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
18 | fveq2 6825 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq2d 5104 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
20 | 17, 19 | anbi12d 631 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
21 | 15, 16, 20 | cbvrexw 3286 | . . . . . . . . 9 ⊢ (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
23 | 7, 22 | bitrd 278 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
24 | 23 | cbvralvw 3221 | . . . . . 6 ⊢ (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
26 | breq1 5095 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑥 ≤ (𝐹‘𝑗))) | |
27 | 26 | anbi2d 629 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
28 | 27 | rexbidv 3171 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
29 | 28 | ralbidv 3170 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
30 | 25, 29 | bitrd 278 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
31 | 30 | cbvralvw 3221 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
33 | 4, 32 | bitrd 278 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3070 ⊆ wss 3898 class class class wbr 5092 ⟶wf 6475 ‘cfv 6479 ℝcr 10971 +∞cpnf 11107 ℝ*cxr 11109 ≤ cle 11111 lim supclsp 15278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-ico 13186 df-limsup 15279 |
This theorem is referenced by: limsupre2lem 43610 |
Copyright terms: Public domain | W3C validator |