Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnf Structured version   Visualization version   GIF version

Theorem limsuppnf 45695
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnf.j 𝑗𝐹
limsuppnf.a (𝜑𝐴 ⊆ ℝ)
limsuppnf.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnf (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . 3 𝑙𝐹
2 limsuppnf.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsuppnf.f . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsuppnflem 45694 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
5 breq1 5154 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
65anbi1d 631 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
76rexbidv 3179 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
8 nfv 1914 . . . . . . . . . . 11 𝑗 𝑘𝑙
9 nfcv 2905 . . . . . . . . . . . 12 𝑗𝑦
10 nfcv 2905 . . . . . . . . . . . 12 𝑗
11 limsuppnf.j . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2905 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6924 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
149, 10, 13nfbr 5198 . . . . . . . . . . 11 𝑗 𝑦 ≤ (𝐹𝑙)
158, 14nfan 1899 . . . . . . . . . 10 𝑗(𝑘𝑙𝑦 ≤ (𝐹𝑙))
16 nfv 1914 . . . . . . . . . 10 𝑙(𝑘𝑗𝑦 ≤ (𝐹𝑗))
17 breq2 5155 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
18 fveq2 6914 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq2d 5163 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ (𝐹𝑗)))
2017, 19anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2115, 16, 20cbvrexw 3307 . . . . . . . . 9 (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2221a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
237, 22bitrd 279 . . . . . . 7 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423cbvralvw 3237 . . . . . 6 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2524a1i 11 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
26 breq1 5154 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑥 ≤ (𝐹𝑗)))
2726anbi2d 630 . . . . . . 7 (𝑦 = 𝑥 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827rexbidv 3179 . . . . . 6 (𝑦 = 𝑥 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2928ralbidv 3178 . . . . 5 (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3025, 29bitrd 279 . . . 4 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvralvw 3237 . . 3 (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
3231a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
334, 32bitrd 279 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnfc 2890  wral 3061  wrex 3070  wss 3966   class class class wbr 5151  wf 6565  cfv 6569  cr 11161  +∞cpnf 11299  *cxr 11301  cle 11303  lim supclsp 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-po 5601  df-so 5602  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-ico 13399  df-limsup 15513
This theorem is referenced by:  limsupre2lem  45708
  Copyright terms: Public domain W3C validator