Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnf | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnf.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsuppnf | ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | limsuppnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | limsuppnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
4 | 1, 2, 3 | limsuppnflem 43251 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
5 | breq1 5077 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
6 | 5 | anbi1d 630 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
7 | 6 | rexbidv 3226 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
8 | nfv 1917 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
9 | nfcv 2907 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
10 | nfcv 2907 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
11 | limsuppnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2907 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6784 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | 9, 10, 13 | nfbr 5121 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
15 | 8, 14 | nfan 1902 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
16 | nfv 1917 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
17 | breq2 5078 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
18 | fveq2 6774 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq2d 5086 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
20 | 17, 19 | anbi12d 631 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
21 | 15, 16, 20 | cbvrexw 3374 | . . . . . . . . 9 ⊢ (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
23 | 7, 22 | bitrd 278 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
24 | 23 | cbvralvw 3383 | . . . . . 6 ⊢ (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
26 | breq1 5077 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑥 ≤ (𝐹‘𝑗))) | |
27 | 26 | anbi2d 629 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
28 | 27 | rexbidv 3226 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
29 | 28 | ralbidv 3112 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
30 | 25, 29 | bitrd 278 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
31 | 30 | cbvralvw 3383 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
33 | 4, 32 | bitrd 278 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 lim supclsp 15179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-ico 13085 df-limsup 15180 |
This theorem is referenced by: limsupre2lem 43265 |
Copyright terms: Public domain | W3C validator |