Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnf Structured version   Visualization version   GIF version

Theorem limsuppnf 45709
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnf.j 𝑗𝐹
limsuppnf.a (𝜑𝐴 ⊆ ℝ)
limsuppnf.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnf (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . 3 𝑙𝐹
2 limsuppnf.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsuppnf.f . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsuppnflem 45708 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
5 breq1 5110 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
65anbi1d 631 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
76rexbidv 3157 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙))))
8 nfv 1914 . . . . . . . . . . 11 𝑗 𝑘𝑙
9 nfcv 2891 . . . . . . . . . . . 12 𝑗𝑦
10 nfcv 2891 . . . . . . . . . . . 12 𝑗
11 limsuppnf.j . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2891 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6868 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
149, 10, 13nfbr 5154 . . . . . . . . . . 11 𝑗 𝑦 ≤ (𝐹𝑙)
158, 14nfan 1899 . . . . . . . . . 10 𝑗(𝑘𝑙𝑦 ≤ (𝐹𝑙))
16 nfv 1914 . . . . . . . . . 10 𝑙(𝑘𝑗𝑦 ≤ (𝐹𝑗))
17 breq2 5111 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
18 fveq2 6858 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq2d 5119 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ (𝐹𝑗)))
2017, 19anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2115, 16, 20cbvrexw 3281 . . . . . . . . 9 (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2221a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
237, 22bitrd 279 . . . . . . 7 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423cbvralvw 3215 . . . . . 6 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
2524a1i 11 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
26 breq1 5110 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑥 ≤ (𝐹𝑗)))
2726anbi2d 630 . . . . . . 7 (𝑦 = 𝑥 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827rexbidv 3157 . . . . . 6 (𝑦 = 𝑥 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2928ralbidv 3156 . . . . 5 (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3025, 29bitrd 279 . . . 4 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvralvw 3215 . . 3 (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
3231a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
334, 32bitrd 279 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2876  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  wf 6507  cfv 6511  cr 11067  +∞cpnf 11205  *cxr 11207  cle 11209  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ico 13312  df-limsup 15437
This theorem is referenced by:  limsupre2lem  45722
  Copyright terms: Public domain W3C validator