MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   GIF version

Theorem fprodle 15342
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1red 10631 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ∈ ℝ)
2 fprodle.kph . . . . . 6 𝑘𝜑
3 nfra1 3183 . . . . . 6 𝑘𝑘𝐴 𝐵 ≠ 0
42, 3nfan 1900 . . . . 5 𝑘(𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0)
5 fprodle.a . . . . . 6 (𝜑𝐴 ∈ Fin)
65adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 𝐴 ∈ Fin)
7 fprodle.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
87adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
9 fprodle.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
11 rspa 3171 . . . . . . 7 ((∀𝑘𝐴 𝐵 ≠ 0 ∧ 𝑘𝐴) → 𝐵 ≠ 0)
1211adantll 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ≠ 0)
138, 10, 12redivcld 11457 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → (𝐶 / 𝐵) ∈ ℝ)
144, 6, 13fprodreclf 15305 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) ∈ ℝ)
152, 5, 9fprodreclf 15305 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
1615adantr 484 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℝ)
17 fprodle.0l3b . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
182, 5, 9, 17fprodge0 15339 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
1918adantr 484 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 0 ≤ ∏𝑘𝐴 𝐵)
2017adantlr 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
2110, 20, 12ne0gt0d 10766 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 < 𝐵)
2210, 21elrpd 12416 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ+)
23 fprodle.blec . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝐶)
2423adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵𝐶)
25 divge1 12445 . . . . . 6 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ ∧ 𝐵𝐶) → 1 ≤ (𝐶 / 𝐵))
2622, 8, 24, 25syl3anc 1368 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 1 ≤ (𝐶 / 𝐵))
274, 6, 13, 26fprodge1 15341 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ≤ ∏𝑘𝐴 (𝐶 / 𝐵))
281, 14, 16, 19, 27lemul2ad 11569 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)))
299recnd 10658 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
302, 5, 29fprodclf 15338 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
3130mulid1d 10647 . . . 4 (𝜑 → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
3231adantr 484 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
337recnd 10658 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3433adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
3529adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
364, 6, 34, 35, 12fproddivf 15333 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) = (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵))
3736oveq2d 7151 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)))
382, 5, 33fprodclf 15338 . . . . . 6 (𝜑 → ∏𝑘𝐴 𝐶 ∈ ℂ)
3938adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 ∈ ℂ)
4030adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℂ)
414, 6, 35, 12fprodn0f 15337 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≠ 0)
4239, 40, 41divcan2d 11407 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)) = ∏𝑘𝐴 𝐶)
4337, 42eqtrd 2833 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = ∏𝑘𝐴 𝐶)
4428, 32, 433brtr3d 5061 . 2 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
45 nne 2991 . . . . 5 𝐵 ≠ 0 ↔ 𝐵 = 0)
4645rexbii 3210 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ∃𝑘𝐴 𝐵 = 0)
47 rexnal 3201 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀𝑘𝐴 𝐵 ≠ 0)
48 nfv 1915 . . . . 5 𝑗 𝐵 = 0
49 nfcsb1v 3852 . . . . . 6 𝑘𝑗 / 𝑘𝐵
5049nfeq1 2970 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 0
51 csbeq1a 3842 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5251eqeq1d 2800 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 0 ↔ 𝑗 / 𝑘𝐵 = 0))
5348, 50, 52cbvrexw 3388 . . . 4 (∃𝑘𝐴 𝐵 = 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
5446, 47, 533bitr3i 304 . . 3 (¬ ∀𝑘𝐴 𝐵 ≠ 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
55 nfv 1915 . . . . . . . 8 𝑘 𝑗𝐴
562, 55, 50nf3an 1902 . . . . . . 7 𝑘(𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0)
5753ad2ant1 1130 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝐴 ∈ Fin)
58293ad2antl1 1182 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
59 simp2 1134 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝑗𝐴)
6052biimparc 483 . . . . . . . 8 ((𝑗 / 𝑘𝐵 = 0 ∧ 𝑘 = 𝑗) → 𝐵 = 0)
61603ad2antl3 1184 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘 = 𝑗) → 𝐵 = 0)
6256, 57, 58, 59, 61fprodeq0g 15340 . . . . . 6 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
6362rexlimdv3a 3245 . . . . 5 (𝜑 → (∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0))
6463imp 410 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
65 0red 10633 . . . . . . 7 ((𝜑𝑘𝐴) → 0 ∈ ℝ)
6665, 9, 7, 17, 23letrd 10786 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
672, 5, 7, 66fprodge0 15339 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐶)
6867adantr 484 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → 0 ≤ ∏𝑘𝐴 𝐶)
6964, 68eqbrtrd 5052 . . 3 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7054, 69sylan2b 596 . 2 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7144, 70pm2.61dan 812 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wne 2987  wral 3106  wrex 3107  csb 3828   class class class wbr 5030  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cle 10665   / cdiv 11286  +crp 12377  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by:  prmolefac  16372  etransclem23  42899  hoidifhspdmvle  43259
  Copyright terms: Public domain W3C validator