MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   GIF version

Theorem fprodle 15938
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1red 11151 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ∈ ℝ)
2 fprodle.kph . . . . . 6 𝑘𝜑
3 nfra1 3259 . . . . . 6 𝑘𝑘𝐴 𝐵 ≠ 0
42, 3nfan 1899 . . . . 5 𝑘(𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0)
5 fprodle.a . . . . . 6 (𝜑𝐴 ∈ Fin)
65adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 𝐴 ∈ Fin)
7 fprodle.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
87adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
9 fprodle.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
11 rspa 3224 . . . . . . 7 ((∀𝑘𝐴 𝐵 ≠ 0 ∧ 𝑘𝐴) → 𝐵 ≠ 0)
1211adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ≠ 0)
138, 10, 12redivcld 11986 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → (𝐶 / 𝐵) ∈ ℝ)
144, 6, 13fprodreclf 15901 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) ∈ ℝ)
152, 5, 9fprodreclf 15901 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
1615adantr 480 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℝ)
17 fprodle.0l3b . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
182, 5, 9, 17fprodge0 15935 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
1918adantr 480 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 0 ≤ ∏𝑘𝐴 𝐵)
2017adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
2110, 20, 12ne0gt0d 11287 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 < 𝐵)
2210, 21elrpd 12968 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ+)
23 fprodle.blec . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝐶)
2423adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵𝐶)
25 divge1 12997 . . . . . 6 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ ∧ 𝐵𝐶) → 1 ≤ (𝐶 / 𝐵))
2622, 8, 24, 25syl3anc 1373 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 1 ≤ (𝐶 / 𝐵))
274, 6, 13, 26fprodge1 15937 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ≤ ∏𝑘𝐴 (𝐶 / 𝐵))
281, 14, 16, 19, 27lemul2ad 12099 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)))
299recnd 11178 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
302, 5, 29fprodclf 15934 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
3130mulridd 11167 . . . 4 (𝜑 → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
3231adantr 480 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
337recnd 11178 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3433adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
3529adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
364, 6, 34, 35, 12fproddivf 15929 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) = (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵))
3736oveq2d 7385 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)))
382, 5, 33fprodclf 15934 . . . . . 6 (𝜑 → ∏𝑘𝐴 𝐶 ∈ ℂ)
3938adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 ∈ ℂ)
4030adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℂ)
414, 6, 35, 12fprodn0f 15933 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≠ 0)
4239, 40, 41divcan2d 11936 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)) = ∏𝑘𝐴 𝐶)
4337, 42eqtrd 2764 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = ∏𝑘𝐴 𝐶)
4428, 32, 433brtr3d 5133 . 2 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
45 nne 2929 . . . . 5 𝐵 ≠ 0 ↔ 𝐵 = 0)
4645rexbii 3076 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ∃𝑘𝐴 𝐵 = 0)
47 rexnal 3082 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀𝑘𝐴 𝐵 ≠ 0)
48 nfv 1914 . . . . 5 𝑗 𝐵 = 0
49 nfcsb1v 3883 . . . . . 6 𝑘𝑗 / 𝑘𝐵
5049nfeq1 2907 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 0
51 csbeq1a 3873 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5251eqeq1d 2731 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 0 ↔ 𝑗 / 𝑘𝐵 = 0))
5348, 50, 52cbvrexw 3279 . . . 4 (∃𝑘𝐴 𝐵 = 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
5446, 47, 533bitr3i 301 . . 3 (¬ ∀𝑘𝐴 𝐵 ≠ 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
55 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐴
562, 55, 50nf3an 1901 . . . . . . 7 𝑘(𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0)
5753ad2ant1 1133 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝐴 ∈ Fin)
58293ad2antl1 1186 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
59 simp2 1137 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝑗𝐴)
6052biimparc 479 . . . . . . . 8 ((𝑗 / 𝑘𝐵 = 0 ∧ 𝑘 = 𝑗) → 𝐵 = 0)
61603ad2antl3 1188 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘 = 𝑗) → 𝐵 = 0)
6256, 57, 58, 59, 61fprodeq0g 15936 . . . . . 6 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
6362rexlimdv3a 3138 . . . . 5 (𝜑 → (∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0))
6463imp 406 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
65 0red 11153 . . . . . . 7 ((𝜑𝑘𝐴) → 0 ∈ ℝ)
6665, 9, 7, 17, 23letrd 11307 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
672, 5, 7, 66fprodge0 15935 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐶)
6867adantr 480 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → 0 ≤ ∏𝑘𝐴 𝐶)
6964, 68eqbrtrd 5124 . . 3 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7054, 69sylan2b 594 . 2 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7144, 70pm2.61dan 812 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  csb 3859   class class class wbr 5102  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185   / cdiv 11811  +crp 12927  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846
This theorem is referenced by:  prmolefac  16993  aks4d1p1p2  42031  bcled  42139  bcle2d  42140  etransclem23  46228  hoidifhspdmvle  46591
  Copyright terms: Public domain W3C validator