MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   GIF version

Theorem fprodle 15634
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1red 10907 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ∈ ℝ)
2 fprodle.kph . . . . . 6 𝑘𝜑
3 nfra1 3142 . . . . . 6 𝑘𝑘𝐴 𝐵 ≠ 0
42, 3nfan 1903 . . . . 5 𝑘(𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0)
5 fprodle.a . . . . . 6 (𝜑𝐴 ∈ Fin)
65adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 𝐴 ∈ Fin)
7 fprodle.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
87adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
9 fprodle.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
11 rspa 3130 . . . . . . 7 ((∀𝑘𝐴 𝐵 ≠ 0 ∧ 𝑘𝐴) → 𝐵 ≠ 0)
1211adantll 710 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ≠ 0)
138, 10, 12redivcld 11733 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → (𝐶 / 𝐵) ∈ ℝ)
144, 6, 13fprodreclf 15597 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) ∈ ℝ)
152, 5, 9fprodreclf 15597 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
1615adantr 480 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℝ)
17 fprodle.0l3b . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
182, 5, 9, 17fprodge0 15631 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
1918adantr 480 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 0 ≤ ∏𝑘𝐴 𝐵)
2017adantlr 711 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
2110, 20, 12ne0gt0d 11042 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 < 𝐵)
2210, 21elrpd 12698 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ+)
23 fprodle.blec . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝐶)
2423adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵𝐶)
25 divge1 12727 . . . . . 6 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ ∧ 𝐵𝐶) → 1 ≤ (𝐶 / 𝐵))
2622, 8, 24, 25syl3anc 1369 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 1 ≤ (𝐶 / 𝐵))
274, 6, 13, 26fprodge1 15633 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ≤ ∏𝑘𝐴 (𝐶 / 𝐵))
281, 14, 16, 19, 27lemul2ad 11845 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)))
299recnd 10934 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
302, 5, 29fprodclf 15630 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
3130mulid1d 10923 . . . 4 (𝜑 → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
3231adantr 480 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
337recnd 10934 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3433adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
3529adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
364, 6, 34, 35, 12fproddivf 15625 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) = (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵))
3736oveq2d 7271 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)))
382, 5, 33fprodclf 15630 . . . . . 6 (𝜑 → ∏𝑘𝐴 𝐶 ∈ ℂ)
3938adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 ∈ ℂ)
4030adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℂ)
414, 6, 35, 12fprodn0f 15629 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≠ 0)
4239, 40, 41divcan2d 11683 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)) = ∏𝑘𝐴 𝐶)
4337, 42eqtrd 2778 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = ∏𝑘𝐴 𝐶)
4428, 32, 433brtr3d 5101 . 2 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
45 nne 2946 . . . . 5 𝐵 ≠ 0 ↔ 𝐵 = 0)
4645rexbii 3177 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ∃𝑘𝐴 𝐵 = 0)
47 rexnal 3165 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀𝑘𝐴 𝐵 ≠ 0)
48 nfv 1918 . . . . 5 𝑗 𝐵 = 0
49 nfcsb1v 3853 . . . . . 6 𝑘𝑗 / 𝑘𝐵
5049nfeq1 2921 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 0
51 csbeq1a 3842 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5251eqeq1d 2740 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 0 ↔ 𝑗 / 𝑘𝐵 = 0))
5348, 50, 52cbvrexw 3364 . . . 4 (∃𝑘𝐴 𝐵 = 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
5446, 47, 533bitr3i 300 . . 3 (¬ ∀𝑘𝐴 𝐵 ≠ 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
55 nfv 1918 . . . . . . . 8 𝑘 𝑗𝐴
562, 55, 50nf3an 1905 . . . . . . 7 𝑘(𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0)
5753ad2ant1 1131 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝐴 ∈ Fin)
58293ad2antl1 1183 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
59 simp2 1135 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝑗𝐴)
6052biimparc 479 . . . . . . . 8 ((𝑗 / 𝑘𝐵 = 0 ∧ 𝑘 = 𝑗) → 𝐵 = 0)
61603ad2antl3 1185 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘 = 𝑗) → 𝐵 = 0)
6256, 57, 58, 59, 61fprodeq0g 15632 . . . . . 6 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
6362rexlimdv3a 3214 . . . . 5 (𝜑 → (∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0))
6463imp 406 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
65 0red 10909 . . . . . . 7 ((𝜑𝑘𝐴) → 0 ∈ ℝ)
6665, 9, 7, 17, 23letrd 11062 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
672, 5, 7, 66fprodge0 15631 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐶)
6867adantr 480 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → 0 ≤ ∏𝑘𝐴 𝐶)
6964, 68eqbrtrd 5092 . . 3 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7054, 69sylan2b 593 . 2 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7144, 70pm2.61dan 809 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  csb 3828   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941   / cdiv 11562  +crp 12659  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  prmolefac  16675  aks4d1p1p2  40006  etransclem23  43688  hoidifhspdmvle  44048
  Copyright terms: Public domain W3C validator