MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   GIF version

Theorem fprodle 15890
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1red 11165 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ∈ ℝ)
2 fprodle.kph . . . . . 6 𝑘𝜑
3 nfra1 3265 . . . . . 6 𝑘𝑘𝐴 𝐵 ≠ 0
42, 3nfan 1902 . . . . 5 𝑘(𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0)
5 fprodle.a . . . . . 6 (𝜑𝐴 ∈ Fin)
65adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 𝐴 ∈ Fin)
7 fprodle.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
87adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
9 fprodle.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
11 rspa 3229 . . . . . . 7 ((∀𝑘𝐴 𝐵 ≠ 0 ∧ 𝑘𝐴) → 𝐵 ≠ 0)
1211adantll 712 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ≠ 0)
138, 10, 12redivcld 11992 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → (𝐶 / 𝐵) ∈ ℝ)
144, 6, 13fprodreclf 15853 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) ∈ ℝ)
152, 5, 9fprodreclf 15853 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
1615adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℝ)
17 fprodle.0l3b . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
182, 5, 9, 17fprodge0 15887 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
1918adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 0 ≤ ∏𝑘𝐴 𝐵)
2017adantlr 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
2110, 20, 12ne0gt0d 11301 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 < 𝐵)
2210, 21elrpd 12963 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ+)
23 fprodle.blec . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝐶)
2423adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵𝐶)
25 divge1 12992 . . . . . 6 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ ∧ 𝐵𝐶) → 1 ≤ (𝐶 / 𝐵))
2622, 8, 24, 25syl3anc 1371 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 1 ≤ (𝐶 / 𝐵))
274, 6, 13, 26fprodge1 15889 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ≤ ∏𝑘𝐴 (𝐶 / 𝐵))
281, 14, 16, 19, 27lemul2ad 12104 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)))
299recnd 11192 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
302, 5, 29fprodclf 15886 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
3130mulridd 11181 . . . 4 (𝜑 → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
3231adantr 481 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
337recnd 11192 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3433adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
3529adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
364, 6, 34, 35, 12fproddivf 15881 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) = (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵))
3736oveq2d 7378 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)))
382, 5, 33fprodclf 15886 . . . . . 6 (𝜑 → ∏𝑘𝐴 𝐶 ∈ ℂ)
3938adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 ∈ ℂ)
4030adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℂ)
414, 6, 35, 12fprodn0f 15885 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≠ 0)
4239, 40, 41divcan2d 11942 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)) = ∏𝑘𝐴 𝐶)
4337, 42eqtrd 2771 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = ∏𝑘𝐴 𝐶)
4428, 32, 433brtr3d 5141 . 2 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
45 nne 2943 . . . . 5 𝐵 ≠ 0 ↔ 𝐵 = 0)
4645rexbii 3093 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ∃𝑘𝐴 𝐵 = 0)
47 rexnal 3099 . . . 4 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀𝑘𝐴 𝐵 ≠ 0)
48 nfv 1917 . . . . 5 𝑗 𝐵 = 0
49 nfcsb1v 3883 . . . . . 6 𝑘𝑗 / 𝑘𝐵
5049nfeq1 2917 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 0
51 csbeq1a 3872 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5251eqeq1d 2733 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 0 ↔ 𝑗 / 𝑘𝐵 = 0))
5348, 50, 52cbvrexw 3288 . . . 4 (∃𝑘𝐴 𝐵 = 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
5446, 47, 533bitr3i 300 . . 3 (¬ ∀𝑘𝐴 𝐵 ≠ 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
55 nfv 1917 . . . . . . . 8 𝑘 𝑗𝐴
562, 55, 50nf3an 1904 . . . . . . 7 𝑘(𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0)
5753ad2ant1 1133 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝐴 ∈ Fin)
58293ad2antl1 1185 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
59 simp2 1137 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝑗𝐴)
6052biimparc 480 . . . . . . . 8 ((𝑗 / 𝑘𝐵 = 0 ∧ 𝑘 = 𝑗) → 𝐵 = 0)
61603ad2antl3 1187 . . . . . . 7 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘 = 𝑗) → 𝐵 = 0)
6256, 57, 58, 59, 61fprodeq0g 15888 . . . . . 6 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
6362rexlimdv3a 3152 . . . . 5 (𝜑 → (∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0))
6463imp 407 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
65 0red 11167 . . . . . . 7 ((𝜑𝑘𝐴) → 0 ∈ ℝ)
6665, 9, 7, 17, 23letrd 11321 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
672, 5, 7, 66fprodge0 15887 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐶)
6867adantr 481 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → 0 ≤ ∏𝑘𝐴 𝐶)
6964, 68eqbrtrd 5132 . . 3 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7054, 69sylan2b 594 . 2 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
7144, 70pm2.61dan 811 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wne 2939  wral 3060  wrex 3069  csb 3858   class class class wbr 5110  (class class class)co 7362  Fincfn 8890  cc 11058  cr 11059  0cc0 11060  1c1 11061   · cmul 11065  cle 11199   / cdiv 11821  +crp 12924  cprod 15799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-ico 13280  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-prod 15800
This theorem is referenced by:  prmolefac  16929  aks4d1p1p2  40600  etransclem23  44618  hoidifhspdmvle  44981
  Copyright terms: Public domain W3C validator