Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3 Structured version   Visualization version   GIF version

Theorem limsupre3 45689
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3.1 𝑗𝐹
limsupre3.2 (𝜑𝐴 ⊆ ℝ)
limsupre3.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupre3
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑙𝐹
2 limsupre3.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre3lem 45688 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦))))
5 breq1 5151 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
65anbi2d 630 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
76rexbidv 3177 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
87ralbidv 3176 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
9 breq1 5151 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
109anbi1d 631 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑥 ≤ (𝐹𝑙))))
1110rexbidv 3177 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙))))
12 nfv 1912 . . . . . . . . . . . 12 𝑗 𝑘𝑙
13 nfcv 2903 . . . . . . . . . . . . 13 𝑗𝑥
14 nfcv 2903 . . . . . . . . . . . . 13 𝑗
15 limsupre3.1 . . . . . . . . . . . . . 14 𝑗𝐹
16 nfcv 2903 . . . . . . . . . . . . . 14 𝑗𝑙
1715, 16nffv 6917 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1813, 14, 17nfbr 5195 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
1912, 18nfan 1897 . . . . . . . . . . 11 𝑗(𝑘𝑙𝑥 ≤ (𝐹𝑙))
20 nfv 1912 . . . . . . . . . . 11 𝑙(𝑘𝑗𝑥 ≤ (𝐹𝑗))
21 breq2 5152 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
22 fveq2 6907 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2322breq2d 5160 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2421, 23anbi12d 632 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2519, 20, 24cbvrexw 3305 . . . . . . . . . 10 (∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2711, 26bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827cbvralvw 3235 . . . . . . 7 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
308, 29bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvrexvw 3236 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32 breq2 5152 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
3332imbi2d 340 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
3433ralbidv 3176 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
3534rexbidv 3177 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
369imbi1d 341 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
3736ralbidv 3176 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
3817, 14, 13nfbr 5195 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
3912, 38nfim 1894 . . . . . . . . . . 11 𝑗(𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)
40 nfv 1912 . . . . . . . . . . 11 𝑙(𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
4122breq1d 5158 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4221, 41imbi12d 344 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4339, 40, 42cbvralw 3304 . . . . . . . . . 10 (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4443a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4537, 44bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4645cbvrexvw 3236 . . . . . . 7 (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4746a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4835, 47bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4948cbvrexvw 3236 . . . 4 (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5031, 49anbi12i 628 . . 3 ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
5150a1i 11 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
524, 51bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  cr 11152  *cxr 11292  cle 11294  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-ico 13390  df-limsup 15504
This theorem is referenced by:  limsupre3mpt  45690  limsupre3uzlem  45691
  Copyright terms: Public domain W3C validator