Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3 Structured version   Visualization version   GIF version

Theorem limsupre3 41577
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3.1 𝑗𝐹
limsupre3.2 (𝜑𝐴 ⊆ ℝ)
limsupre3.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupre3
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2951 . . 3 𝑙𝐹
2 limsupre3.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre3lem 41576 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦))))
5 breq1 4971 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
65anbi2d 628 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
76rexbidv 3262 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
87ralbidv 3166 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙))))
9 breq1 4971 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
109anbi1d 629 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ (𝑘𝑙𝑥 ≤ (𝐹𝑙))))
1110rexbidv 3262 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙))))
12 nfv 1896 . . . . . . . . . . . 12 𝑗 𝑘𝑙
13 nfcv 2951 . . . . . . . . . . . . 13 𝑗𝑥
14 nfcv 2951 . . . . . . . . . . . . 13 𝑗
15 limsupre3.1 . . . . . . . . . . . . . 14 𝑗𝐹
16 nfcv 2951 . . . . . . . . . . . . . 14 𝑗𝑙
1715, 16nffv 6555 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1813, 14, 17nfbr 5015 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
1912, 18nfan 1885 . . . . . . . . . . 11 𝑗(𝑘𝑙𝑥 ≤ (𝐹𝑙))
20 nfv 1896 . . . . . . . . . . 11 𝑙(𝑘𝑗𝑥 ≤ (𝐹𝑗))
21 breq2 4972 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
22 fveq2 6545 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2322breq2d 4980 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2421, 23anbi12d 630 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2519, 20, 24cbvrex 3402 . . . . . . . . . 10 (∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2711, 26bitrd 280 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2827cbvralv 3405 . . . . . . 7 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
308, 29bitrd 280 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
3130cbvrexv 3406 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32 breq2 4972 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
3332imbi2d 342 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
3433ralbidv 3166 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
3534rexbidv 3262 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
369imbi1d 343 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
3736ralbidv 3166 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
3817, 14, 13nfbr 5015 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
3912, 38nfim 1882 . . . . . . . . . . 11 𝑗(𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)
40 nfv 1896 . . . . . . . . . . 11 𝑙(𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
4122breq1d 4978 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4221, 41imbi12d 346 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4339, 40, 42cbvral 3401 . . . . . . . . . 10 (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4443a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4537, 44bitrd 280 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4645cbvrexv 3406 . . . . . . 7 (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4746a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4835, 47bitrd 280 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
4948cbvrexv 3406 . . . 4 (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5031, 49anbi12i 626 . . 3 ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
5150a1i 11 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
524, 51bitrd 280 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wnfc 2935  wral 3107  wrex 3108  wss 3865   class class class wbr 4968  wf 6228  cfv 6232  cr 10389  *cxr 10527  cle 10529  lim supclsp 14665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-ico 12598  df-limsup 14666
This theorem is referenced by:  limsupre3mpt  41578  limsupre3uzlem  41579
  Copyright terms: Public domain W3C validator