Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2 Structured version   Visualization version   GIF version

Theorem limsupre2 45771
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2.1 𝑗𝐹
limsupre2.2 (𝜑𝐴 ⊆ ℝ)
limsupre2.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupre2
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2894 . . 3 𝑙𝐹
2 limsupre2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre2.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre2lem 45770 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦))))
5 breq1 5092 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 < (𝐹𝑙) ↔ 𝑥 < (𝐹𝑙)))
65anbi2d 630 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙𝑦 < (𝐹𝑙)) ↔ (𝑖𝑙𝑥 < (𝐹𝑙))))
76rexbidv 3156 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙))))
87ralbidv 3155 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙))))
9 breq1 5092 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
109anbi1d 631 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙𝑥 < (𝐹𝑙)) ↔ (𝑘𝑙𝑥 < (𝐹𝑙))))
1110rexbidv 3156 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙))))
12 nfv 1915 . . . . . . . . . . . 12 𝑗 𝑘𝑙
13 nfcv 2894 . . . . . . . . . . . . 13 𝑗𝑥
14 nfcv 2894 . . . . . . . . . . . . 13 𝑗 <
15 limsupre2.1 . . . . . . . . . . . . . 14 𝑗𝐹
16 nfcv 2894 . . . . . . . . . . . . . 14 𝑗𝑙
1715, 16nffv 6832 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1813, 14, 17nfbr 5136 . . . . . . . . . . . 12 𝑗 𝑥 < (𝐹𝑙)
1912, 18nfan 1900 . . . . . . . . . . 11 𝑗(𝑘𝑙𝑥 < (𝐹𝑙))
20 nfv 1915 . . . . . . . . . . 11 𝑙(𝑘𝑗𝑥 < (𝐹𝑗))
21 breq2 5093 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
22 fveq2 6822 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2322breq2d 5101 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 < (𝐹𝑙) ↔ 𝑥 < (𝐹𝑗)))
2421, 23anbi12d 632 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙𝑥 < (𝐹𝑙)) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
2519, 20, 24cbvrexw 3275 . . . . . . . . . 10 (∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
2711, 26bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
2827cbvralvw 3210 . . . . . . 7 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
308, 29bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3130cbvrexvw 3211 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3231a1i 11 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
33 breq2 5093 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) < 𝑦 ↔ (𝐹𝑙) < 𝑥))
3433imbi2d 340 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
3534ralbidv 3155 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
3635rexbidv 3156 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
379imbi1d 341 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ (𝑘𝑙 → (𝐹𝑙) < 𝑥)))
3837ralbidv 3155 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥)))
3917, 14, 13nfbr 5136 . . . . . . . . . . . 12 𝑗(𝐹𝑙) < 𝑥
4012, 39nfim 1897 . . . . . . . . . . 11 𝑗(𝑘𝑙 → (𝐹𝑙) < 𝑥)
41 nfv 1915 . . . . . . . . . . 11 𝑙(𝑘𝑗 → (𝐹𝑗) < 𝑥)
4222breq1d 5099 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) < 𝑥 ↔ (𝐹𝑗) < 𝑥))
4321, 42imbi12d 344 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4440, 41, 43cbvralw 3274 . . . . . . . . . 10 (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
4544a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4638, 45bitrd 279 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4746cbvrexvw 3211 . . . . . . 7 (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
4847a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4936, 48bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5049cbvrexvw 3211 . . . 4 (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
5150a1i 11 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5232, 51anbi12d 632 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
534, 52bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056  wss 3897   class class class wbr 5089  wf 6477  cfv 6481  cr 11005  *cxr 11145   < clt 11146  cle 11147  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-ico 13251  df-limsup 15378
This theorem is referenced by:  limsupre2mpt  45776  limsupre3lem  45778
  Copyright terms: Public domain W3C validator