| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfcv 2904 | . . 3
⊢
Ⅎ𝑙𝐹 | 
| 2 |  | limsupre2.2 | . . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 3 |  | limsupre2.3 | . . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | 
| 4 | 1, 2, 3 | limsupre2lem 45744 | . 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑦 ∈ ℝ
∀𝑖 ∈ ℝ
∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦)))) | 
| 5 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 < (𝐹‘𝑙) ↔ 𝑥 < (𝐹‘𝑙))) | 
| 6 | 5 | anbi2d 630 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)))) | 
| 7 | 6 | rexbidv 3178 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)))) | 
| 8 | 7 | ralbidv 3177 | . . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)))) | 
| 9 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | 
| 10 | 9 | anbi1d 631 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)))) | 
| 11 | 10 | rexbidv 3178 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)))) | 
| 12 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑘 ≤ 𝑙 | 
| 13 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝑥 | 
| 14 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗
< | 
| 15 |  | limsupre2.1 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝐹 | 
| 16 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝑙 | 
| 17 | 15, 16 | nffv 6915 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝐹‘𝑙) | 
| 18 | 13, 14, 17 | nfbr 5189 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑥 < (𝐹‘𝑙) | 
| 19 | 12, 18 | nfan 1898 | . . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) | 
| 20 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑙(𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) | 
| 21 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | 
| 22 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | 
| 23 | 22 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (𝑙 = 𝑗 → (𝑥 < (𝐹‘𝑙) ↔ 𝑥 < (𝐹‘𝑗))) | 
| 24 | 21, 23 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 25 | 19, 20, 24 | cbvrexw 3306 | . . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐴 (𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 26 | 25 | a1i 11 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 27 | 11, 26 | bitrd 279 | . . . . . . . 8
⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 28 | 27 | cbvralvw 3236 | . . . . . . 7
⊢
(∀𝑖 ∈
ℝ ∃𝑙 ∈
𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 29 | 28 | a1i 11 | . . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑥 < (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 30 | 8, 29 | bitrd 279 | . . . . 5
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 31 | 30 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑦 ∈
ℝ ∀𝑖 ∈
ℝ ∃𝑙 ∈
𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 32 | 31 | a1i 11 | . . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) | 
| 33 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) < 𝑦 ↔ (𝐹‘𝑙) < 𝑥)) | 
| 34 | 33 | imbi2d 340 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥))) | 
| 35 | 34 | ralbidv 3177 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥))) | 
| 36 | 35 | rexbidv 3178 | . . . . . 6
⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥))) | 
| 37 | 9 | imbi1d 341 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ (𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥))) | 
| 38 | 37 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥))) | 
| 39 | 17, 14, 13 | nfbr 5189 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝐹‘𝑙) < 𝑥 | 
| 40 | 12, 39 | nfim 1895 | . . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) | 
| 41 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑙(𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥) | 
| 42 | 22 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) < 𝑥 ↔ (𝐹‘𝑗) < 𝑥)) | 
| 43 | 21, 42 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 44 | 40, 41, 43 | cbvralw 3305 | . . . . . . . . . 10
⊢
(∀𝑙 ∈
𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)) | 
| 45 | 44 | a1i 11 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 46 | 38, 45 | bitrd 279 | . . . . . . . 8
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 47 | 46 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑖 ∈
ℝ ∀𝑙 ∈
𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)) | 
| 48 | 47 | a1i 11 | . . . . . 6
⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 49 | 36, 48 | bitrd 279 | . . . . 5
⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 50 | 49 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑦 ∈
ℝ ∃𝑖 ∈
ℝ ∀𝑙 ∈
𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)) | 
| 51 | 50 | a1i 11 | . . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) | 
| 52 | 32, 51 | anbi12d 632 | . 2
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 < (𝐹‘𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) | 
| 53 | 4, 52 | bitrd 279 | 1
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) |