Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2 Structured version   Visualization version   GIF version

Theorem limsupre2 42808
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2.1 𝑗𝐹
limsupre2.2 (𝜑𝐴 ⊆ ℝ)
limsupre2.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupre2
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . . 3 𝑙𝐹
2 limsupre2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre2.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre2lem 42807 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦))))
5 breq1 5033 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 < (𝐹𝑙) ↔ 𝑥 < (𝐹𝑙)))
65anbi2d 632 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙𝑦 < (𝐹𝑙)) ↔ (𝑖𝑙𝑥 < (𝐹𝑙))))
76rexbidv 3207 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙))))
87ralbidv 3109 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙))))
9 breq1 5033 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
109anbi1d 633 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙𝑥 < (𝐹𝑙)) ↔ (𝑘𝑙𝑥 < (𝐹𝑙))))
1110rexbidv 3207 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙))))
12 nfv 1921 . . . . . . . . . . . 12 𝑗 𝑘𝑙
13 nfcv 2899 . . . . . . . . . . . . 13 𝑗𝑥
14 nfcv 2899 . . . . . . . . . . . . 13 𝑗 <
15 limsupre2.1 . . . . . . . . . . . . . 14 𝑗𝐹
16 nfcv 2899 . . . . . . . . . . . . . 14 𝑗𝑙
1715, 16nffv 6684 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1813, 14, 17nfbr 5077 . . . . . . . . . . . 12 𝑗 𝑥 < (𝐹𝑙)
1912, 18nfan 1906 . . . . . . . . . . 11 𝑗(𝑘𝑙𝑥 < (𝐹𝑙))
20 nfv 1921 . . . . . . . . . . 11 𝑙(𝑘𝑗𝑥 < (𝐹𝑗))
21 breq2 5034 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
22 fveq2 6674 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2322breq2d 5042 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 < (𝐹𝑙) ↔ 𝑥 < (𝐹𝑗)))
2421, 23anbi12d 634 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙𝑥 < (𝐹𝑙)) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
2519, 20, 24cbvrexw 3341 . . . . . . . . . 10 (∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑘𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
2711, 26bitrd 282 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
2827cbvralvw 3349 . . . . . . 7 (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑥 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
308, 29bitrd 282 . . . . 5 (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3130cbvrexvw 3350 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3231a1i 11 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
33 breq2 5034 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) < 𝑦 ↔ (𝐹𝑙) < 𝑥))
3433imbi2d 344 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
3534ralbidv 3109 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
3635rexbidv 3207 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥)))
379imbi1d 345 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ (𝑘𝑙 → (𝐹𝑙) < 𝑥)))
3837ralbidv 3109 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥)))
3917, 14, 13nfbr 5077 . . . . . . . . . . . 12 𝑗(𝐹𝑙) < 𝑥
4012, 39nfim 1903 . . . . . . . . . . 11 𝑗(𝑘𝑙 → (𝐹𝑙) < 𝑥)
41 nfv 1921 . . . . . . . . . . 11 𝑙(𝑘𝑗 → (𝐹𝑗) < 𝑥)
4222breq1d 5040 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) < 𝑥 ↔ (𝐹𝑗) < 𝑥))
4321, 42imbi12d 348 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4440, 41, 43cbvralw 3340 . . . . . . . . . 10 (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
4544a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4638, 45bitrd 282 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4746cbvrexvw 3350 . . . . . . 7 (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
4847a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
4936, 48bitrd 282 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5049cbvrexvw 3350 . . . 4 (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))
5150a1i 11 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5232, 51anbi12d 634 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 < (𝐹𝑙)) ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
534, 52bitrd 282 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wnfc 2879  wral 3053  wrex 3054  wss 3843   class class class wbr 5030  wf 6335  cfv 6339  cr 10614  *cxr 10752   < clt 10753  cle 10754  lim supclsp 14917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-ico 12827  df-limsup 14918
This theorem is referenced by:  limsupre2mpt  42813  limsupre3lem  42815
  Copyright terms: Public domain W3C validator