Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme43aN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme43.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleme43.l | ⊢ ≤ = (le‘𝐾) |
cdleme43.j | ⊢ ∨ = (join‘𝐾) |
cdleme43.m | ⊢ ∧ = (meet‘𝐾) |
cdleme43.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme43.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme43.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme43.x | ⊢ 𝑋 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
cdleme43.c | ⊢ 𝐶 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.f | ⊢ 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐶 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.d | ⊢ 𝐷 = ((𝑆 ∨ 𝑋) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.g | ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.e | ⊢ 𝐸 = ((𝐷 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝐷) ∧ 𝑊))) |
cdleme43.v | ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) |
cdleme43.y | ⊢ 𝑌 = ((𝑅 ∨ 𝐷) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme43aN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme43.g | . 2 ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) | |
2 | cdleme43.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme43.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | hlatjcom 37368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
5 | cdleme43.v | . . . . 5 ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) | |
6 | 5 | oveq2i 7279 | . . . 4 ⊢ (𝐷 ∨ 𝑉) = (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊)) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝐷 ∨ 𝑉) = (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) |
8 | 4, 7 | oveq12d 7286 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉)) = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊)))) |
9 | 1, 8 | eqtr4id 2797 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 lecple 16957 joincjn 18017 meetcmee 18018 Atomscatm 37263 HLchlt 37350 LHypclh 37984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-lub 18052 df-join 18054 df-lat 18138 df-ats 37267 df-atl 37298 df-cvlat 37322 df-hlat 37351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |