Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43aN Structured version   Visualization version   GIF version

Theorem cdleme43aN 38489
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b 𝐵 = (Base‘𝐾)
cdleme43.l = (le‘𝐾)
cdleme43.j = (join‘𝐾)
cdleme43.m = (meet‘𝐾)
cdleme43.a 𝐴 = (Atoms‘𝐾)
cdleme43.h 𝐻 = (LHyp‘𝐾)
cdleme43.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme43.x 𝑋 = ((𝑄 𝑃) 𝑊)
cdleme43.c 𝐶 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme43.f 𝑍 = ((𝑃 𝑄) (𝐶 ((𝑅 𝑆) 𝑊)))
cdleme43.d 𝐷 = ((𝑆 𝑋) (𝑃 ((𝑄 𝑆) 𝑊)))
cdleme43.g 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
cdleme43.e 𝐸 = ((𝐷 𝑈) (𝑄 ((𝑃 𝐷) 𝑊)))
cdleme43.v 𝑉 = ((𝑍 𝑆) 𝑊)
cdleme43.y 𝑌 = ((𝑅 𝐷) 𝑊)
Assertion
Ref Expression
cdleme43aN ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))

Proof of Theorem cdleme43aN
StepHypRef Expression
1 cdleme43.g . 2 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
2 cdleme43.j . . . 4 = (join‘𝐾)
3 cdleme43.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3hlatjcom 37368 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
5 cdleme43.v . . . . 5 𝑉 = ((𝑍 𝑆) 𝑊)
65oveq2i 7279 . . . 4 (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊))
76a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊)))
84, 7oveq12d 7286 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) (𝐷 𝑉)) = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊))))
91, 8eqtr4id 2797 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6427  (class class class)co 7268  Basecbs 16900  lecple 16957  joincjn 18017  meetcmee 18018  Atomscatm 37263  HLchlt 37350  LHypclh 37984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-lub 18052  df-join 18054  df-lat 18138  df-ats 37267  df-atl 37298  df-cvlat 37322  df-hlat 37351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator