![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme43aN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme43.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleme43.l | ⊢ ≤ = (le‘𝐾) |
cdleme43.j | ⊢ ∨ = (join‘𝐾) |
cdleme43.m | ⊢ ∧ = (meet‘𝐾) |
cdleme43.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme43.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme43.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme43.x | ⊢ 𝑋 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
cdleme43.c | ⊢ 𝐶 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.f | ⊢ 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐶 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.d | ⊢ 𝐷 = ((𝑆 ∨ 𝑋) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.g | ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.e | ⊢ 𝐸 = ((𝐷 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝐷) ∧ 𝑊))) |
cdleme43.v | ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) |
cdleme43.y | ⊢ 𝑌 = ((𝑅 ∨ 𝐷) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme43aN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme43.g | . 2 ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) | |
2 | cdleme43.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme43.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | hlatjcom 39349 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
5 | cdleme43.v | . . . . 5 ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) | |
6 | 5 | oveq2i 7441 | . . . 4 ⊢ (𝐷 ∨ 𝑉) = (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊)) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝐷 ∨ 𝑉) = (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) |
8 | 4, 7 | oveq12d 7448 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉)) = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊)))) |
9 | 1, 8 | eqtr4id 2793 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 meetcmee 18369 Atomscatm 39244 HLchlt 39331 LHypclh 39966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-lub 18403 df-join 18405 df-lat 18489 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |