Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43aN Structured version   Visualization version   GIF version

Theorem cdleme43aN 40456
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b 𝐵 = (Base‘𝐾)
cdleme43.l = (le‘𝐾)
cdleme43.j = (join‘𝐾)
cdleme43.m = (meet‘𝐾)
cdleme43.a 𝐴 = (Atoms‘𝐾)
cdleme43.h 𝐻 = (LHyp‘𝐾)
cdleme43.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme43.x 𝑋 = ((𝑄 𝑃) 𝑊)
cdleme43.c 𝐶 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme43.f 𝑍 = ((𝑃 𝑄) (𝐶 ((𝑅 𝑆) 𝑊)))
cdleme43.d 𝐷 = ((𝑆 𝑋) (𝑃 ((𝑄 𝑆) 𝑊)))
cdleme43.g 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
cdleme43.e 𝐸 = ((𝐷 𝑈) (𝑄 ((𝑃 𝐷) 𝑊)))
cdleme43.v 𝑉 = ((𝑍 𝑆) 𝑊)
cdleme43.y 𝑌 = ((𝑅 𝐷) 𝑊)
Assertion
Ref Expression
cdleme43aN ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))

Proof of Theorem cdleme43aN
StepHypRef Expression
1 cdleme43.g . 2 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
2 cdleme43.j . . . 4 = (join‘𝐾)
3 cdleme43.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3hlatjcom 39334 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
5 cdleme43.v . . . . 5 𝑉 = ((𝑍 𝑆) 𝑊)
65oveq2i 7380 . . . 4 (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊))
76a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊)))
84, 7oveq12d 7387 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) (𝐷 𝑉)) = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊))))
91, 8eqtr4id 2783 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-lub 18281  df-join 18283  df-lat 18367  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator