| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18455 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39327 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39253 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39253 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18455 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 joincjn 18321 Latclat 18439 Atomscatm 39227 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-lub 18354 df-join 18356 df-lat 18440 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: hlatj12 39335 hlatjrot 39337 hlatlej2 39340 atbtwnex 39413 3noncolr2 39414 hlatcon2 39417 3dimlem2 39424 3dimlem3 39426 3dimlem3OLDN 39427 3dimlem4 39429 3dimlem4OLDN 39430 ps-1 39442 hlatexch4 39446 lplnribN 39516 4atlem10 39571 4atlem11 39574 dalemswapyz 39621 dalem-cly 39636 dalemswapyzps 39655 dalem24 39662 dalem25 39663 dalem44 39681 2llnma1 39752 2llnma3r 39753 2llnma2rN 39755 llnexchb2 39834 dalawlem4 39839 dalawlem5 39840 dalawlem9 39844 dalawlem11 39846 dalawlem12 39847 dalawlem15 39850 4atexlemex2 40036 4atexlemcnd 40037 ltrncnv 40111 trlcnv 40130 cdlemc6 40161 cdleme7aa 40207 cdleme12 40236 cdleme15a 40239 cdleme15c 40241 cdleme17c 40253 cdlemeda 40263 cdleme19a 40268 cdleme19e 40272 cdleme20bN 40275 cdleme20g 40280 cdleme20m 40288 cdleme21c 40292 cdleme22f 40311 cdleme22g 40313 cdleme35b 40415 cdleme35f 40419 cdleme37m 40427 cdleme39a 40430 cdleme42h 40447 cdleme43aN 40454 cdleme43bN 40455 cdleme43dN 40457 cdleme46f2g2 40458 cdleme46f2g1 40459 cdlemeg46c 40478 cdlemeg46nlpq 40482 cdlemeg46ngfr 40483 cdlemeg46rgv 40493 cdlemeg46gfv 40495 cdlemg2kq 40567 cdlemg4a 40573 cdlemg4d 40578 cdlemg4 40582 cdlemg8c 40594 cdlemg11aq 40603 cdlemg10a 40605 cdlemg12g 40614 cdlemg12 40615 cdlemg13 40617 cdlemg17pq 40637 cdlemg18b 40644 cdlemg18c 40645 cdlemg19 40649 cdlemg21 40651 cdlemk7 40813 cdlemk7u 40835 cdlemkfid1N 40886 dia2dimlem1 41029 dia2dimlem3 41031 dihjatcclem3 41385 dihjat 41388 |
| Copyright terms: Public domain | W3C validator |