| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18382 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39329 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39255 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39255 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18382 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 joincjn 18248 Latclat 18366 Atomscatm 39229 HLchlt 39316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18281 df-join 18283 df-lat 18367 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 |
| This theorem is referenced by: hlatj12 39337 hlatjrot 39339 hlatlej2 39342 atbtwnex 39415 3noncolr2 39416 hlatcon2 39419 3dimlem2 39426 3dimlem3 39428 3dimlem3OLDN 39429 3dimlem4 39431 3dimlem4OLDN 39432 ps-1 39444 hlatexch4 39448 lplnribN 39518 4atlem10 39573 4atlem11 39576 dalemswapyz 39623 dalem-cly 39638 dalemswapyzps 39657 dalem24 39664 dalem25 39665 dalem44 39683 2llnma1 39754 2llnma3r 39755 2llnma2rN 39757 llnexchb2 39836 dalawlem4 39841 dalawlem5 39842 dalawlem9 39846 dalawlem11 39848 dalawlem12 39849 dalawlem15 39852 4atexlemex2 40038 4atexlemcnd 40039 ltrncnv 40113 trlcnv 40132 cdlemc6 40163 cdleme7aa 40209 cdleme12 40238 cdleme15a 40241 cdleme15c 40243 cdleme17c 40255 cdlemeda 40265 cdleme19a 40270 cdleme19e 40274 cdleme20bN 40277 cdleme20g 40282 cdleme20m 40290 cdleme21c 40294 cdleme22f 40313 cdleme22g 40315 cdleme35b 40417 cdleme35f 40421 cdleme37m 40429 cdleme39a 40432 cdleme42h 40449 cdleme43aN 40456 cdleme43bN 40457 cdleme43dN 40459 cdleme46f2g2 40460 cdleme46f2g1 40461 cdlemeg46c 40480 cdlemeg46nlpq 40484 cdlemeg46ngfr 40485 cdlemeg46rgv 40495 cdlemeg46gfv 40497 cdlemg2kq 40569 cdlemg4a 40575 cdlemg4d 40580 cdlemg4 40584 cdlemg8c 40596 cdlemg11aq 40605 cdlemg10a 40607 cdlemg12g 40616 cdlemg12 40617 cdlemg13 40619 cdlemg17pq 40639 cdlemg18b 40646 cdlemg18c 40647 cdlemg19 40651 cdlemg21 40653 cdlemk7 40815 cdlemk7u 40837 cdlemkfid1N 40888 dia2dimlem1 41031 dia2dimlem3 41033 dihjatcclem3 41387 dihjat 41390 |
| Copyright terms: Public domain | W3C validator |