![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18404 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | β’ β¨ = (joinβπΎ) |
hlatjcom.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatjcom | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38536 | . 2 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2730 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | hlatjcom.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38462 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | 2, 3 | atbase 38462 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | hlatjcom.j | . . 3 β’ β¨ = (joinβπΎ) | |
7 | 2, 6 | latjcom 18404 | . 2 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) = (π β¨ π)) |
8 | 1, 4, 5, 7 | syl3an 1158 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 joincjn 18268 Latclat 18388 Atomscatm 38436 HLchlt 38523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-lub 18303 df-join 18305 df-lat 18389 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: hlatj12 38544 hlatjrot 38546 hlatlej2 38549 atbtwnex 38622 3noncolr2 38623 hlatcon2 38626 3dimlem2 38633 3dimlem3 38635 3dimlem3OLDN 38636 3dimlem4 38638 3dimlem4OLDN 38639 ps-1 38651 hlatexch4 38655 lplnribN 38725 4atlem10 38780 4atlem11 38783 dalemswapyz 38830 dalem-cly 38845 dalemswapyzps 38864 dalem24 38871 dalem25 38872 dalem44 38890 2llnma1 38961 2llnma3r 38962 2llnma2rN 38964 llnexchb2 39043 dalawlem4 39048 dalawlem5 39049 dalawlem9 39053 dalawlem11 39055 dalawlem12 39056 dalawlem15 39059 4atexlemex2 39245 4atexlemcnd 39246 ltrncnv 39320 trlcnv 39339 cdlemc6 39370 cdleme7aa 39416 cdleme12 39445 cdleme15a 39448 cdleme15c 39450 cdleme17c 39462 cdlemeda 39472 cdleme19a 39477 cdleme19e 39481 cdleme20bN 39484 cdleme20g 39489 cdleme20m 39497 cdleme21c 39501 cdleme22f 39520 cdleme22g 39522 cdleme35b 39624 cdleme35f 39628 cdleme37m 39636 cdleme39a 39639 cdleme42h 39656 cdleme43aN 39663 cdleme43bN 39664 cdleme43dN 39666 cdleme46f2g2 39667 cdleme46f2g1 39668 cdlemeg46c 39687 cdlemeg46nlpq 39691 cdlemeg46ngfr 39692 cdlemeg46rgv 39702 cdlemeg46gfv 39704 cdlemg2kq 39776 cdlemg4a 39782 cdlemg4d 39787 cdlemg4 39791 cdlemg8c 39803 cdlemg11aq 39812 cdlemg10a 39814 cdlemg12g 39823 cdlemg12 39824 cdlemg13 39826 cdlemg17pq 39846 cdlemg18b 39853 cdlemg18c 39854 cdlemg19 39858 cdlemg21 39860 cdlemk7 40022 cdlemk7u 40044 cdlemkfid1N 40095 dia2dimlem1 40238 dia2dimlem3 40240 dihjatcclem3 40594 dihjat 40597 |
Copyright terms: Public domain | W3C validator |