![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18401 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38689 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2724 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 38615 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 38615 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 18401 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1157 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17142 joincjn 18265 Latclat 18385 Atomscatm 38589 HLchlt 38676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-lub 18300 df-join 18302 df-lat 18386 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 |
This theorem is referenced by: hlatj12 38697 hlatjrot 38699 hlatlej2 38702 atbtwnex 38775 3noncolr2 38776 hlatcon2 38779 3dimlem2 38786 3dimlem3 38788 3dimlem3OLDN 38789 3dimlem4 38791 3dimlem4OLDN 38792 ps-1 38804 hlatexch4 38808 lplnribN 38878 4atlem10 38933 4atlem11 38936 dalemswapyz 38983 dalem-cly 38998 dalemswapyzps 39017 dalem24 39024 dalem25 39025 dalem44 39043 2llnma1 39114 2llnma3r 39115 2llnma2rN 39117 llnexchb2 39196 dalawlem4 39201 dalawlem5 39202 dalawlem9 39206 dalawlem11 39208 dalawlem12 39209 dalawlem15 39212 4atexlemex2 39398 4atexlemcnd 39399 ltrncnv 39473 trlcnv 39492 cdlemc6 39523 cdleme7aa 39569 cdleme12 39598 cdleme15a 39601 cdleme15c 39603 cdleme17c 39615 cdlemeda 39625 cdleme19a 39630 cdleme19e 39634 cdleme20bN 39637 cdleme20g 39642 cdleme20m 39650 cdleme21c 39654 cdleme22f 39673 cdleme22g 39675 cdleme35b 39777 cdleme35f 39781 cdleme37m 39789 cdleme39a 39792 cdleme42h 39809 cdleme43aN 39816 cdleme43bN 39817 cdleme43dN 39819 cdleme46f2g2 39820 cdleme46f2g1 39821 cdlemeg46c 39840 cdlemeg46nlpq 39844 cdlemeg46ngfr 39845 cdlemeg46rgv 39855 cdlemeg46gfv 39857 cdlemg2kq 39929 cdlemg4a 39935 cdlemg4d 39940 cdlemg4 39944 cdlemg8c 39956 cdlemg11aq 39965 cdlemg10a 39967 cdlemg12g 39976 cdlemg12 39977 cdlemg13 39979 cdlemg17pq 39999 cdlemg18b 40006 cdlemg18c 40007 cdlemg19 40011 cdlemg21 40013 cdlemk7 40175 cdlemk7u 40197 cdlemkfid1N 40248 dia2dimlem1 40391 dia2dimlem3 40393 dihjatcclem3 40747 dihjat 40750 |
Copyright terms: Public domain | W3C validator |