| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18413 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39363 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39289 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39289 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18413 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 joincjn 18279 Latclat 18397 Atomscatm 39263 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-lub 18312 df-join 18314 df-lat 18398 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: hlatj12 39371 hlatjrot 39373 hlatlej2 39376 atbtwnex 39449 3noncolr2 39450 hlatcon2 39453 3dimlem2 39460 3dimlem3 39462 3dimlem3OLDN 39463 3dimlem4 39465 3dimlem4OLDN 39466 ps-1 39478 hlatexch4 39482 lplnribN 39552 4atlem10 39607 4atlem11 39610 dalemswapyz 39657 dalem-cly 39672 dalemswapyzps 39691 dalem24 39698 dalem25 39699 dalem44 39717 2llnma1 39788 2llnma3r 39789 2llnma2rN 39791 llnexchb2 39870 dalawlem4 39875 dalawlem5 39876 dalawlem9 39880 dalawlem11 39882 dalawlem12 39883 dalawlem15 39886 4atexlemex2 40072 4atexlemcnd 40073 ltrncnv 40147 trlcnv 40166 cdlemc6 40197 cdleme7aa 40243 cdleme12 40272 cdleme15a 40275 cdleme15c 40277 cdleme17c 40289 cdlemeda 40299 cdleme19a 40304 cdleme19e 40308 cdleme20bN 40311 cdleme20g 40316 cdleme20m 40324 cdleme21c 40328 cdleme22f 40347 cdleme22g 40349 cdleme35b 40451 cdleme35f 40455 cdleme37m 40463 cdleme39a 40466 cdleme42h 40483 cdleme43aN 40490 cdleme43bN 40491 cdleme43dN 40493 cdleme46f2g2 40494 cdleme46f2g1 40495 cdlemeg46c 40514 cdlemeg46nlpq 40518 cdlemeg46ngfr 40519 cdlemeg46rgv 40529 cdlemeg46gfv 40531 cdlemg2kq 40603 cdlemg4a 40609 cdlemg4d 40614 cdlemg4 40618 cdlemg8c 40630 cdlemg11aq 40639 cdlemg10a 40641 cdlemg12g 40650 cdlemg12 40651 cdlemg13 40653 cdlemg17pq 40673 cdlemg18b 40680 cdlemg18c 40681 cdlemg19 40685 cdlemg21 40687 cdlemk7 40849 cdlemk7u 40871 cdlemkfid1N 40922 dia2dimlem1 41065 dia2dimlem3 41067 dihjatcclem3 41421 dihjat 41424 |
| Copyright terms: Public domain | W3C validator |