![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18517 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39319 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 39245 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 39245 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 18517 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 Latclat 18501 Atomscatm 39219 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-join 18418 df-lat 18502 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: hlatj12 39327 hlatjrot 39329 hlatlej2 39332 atbtwnex 39405 3noncolr2 39406 hlatcon2 39409 3dimlem2 39416 3dimlem3 39418 3dimlem3OLDN 39419 3dimlem4 39421 3dimlem4OLDN 39422 ps-1 39434 hlatexch4 39438 lplnribN 39508 4atlem10 39563 4atlem11 39566 dalemswapyz 39613 dalem-cly 39628 dalemswapyzps 39647 dalem24 39654 dalem25 39655 dalem44 39673 2llnma1 39744 2llnma3r 39745 2llnma2rN 39747 llnexchb2 39826 dalawlem4 39831 dalawlem5 39832 dalawlem9 39836 dalawlem11 39838 dalawlem12 39839 dalawlem15 39842 4atexlemex2 40028 4atexlemcnd 40029 ltrncnv 40103 trlcnv 40122 cdlemc6 40153 cdleme7aa 40199 cdleme12 40228 cdleme15a 40231 cdleme15c 40233 cdleme17c 40245 cdlemeda 40255 cdleme19a 40260 cdleme19e 40264 cdleme20bN 40267 cdleme20g 40272 cdleme20m 40280 cdleme21c 40284 cdleme22f 40303 cdleme22g 40305 cdleme35b 40407 cdleme35f 40411 cdleme37m 40419 cdleme39a 40422 cdleme42h 40439 cdleme43aN 40446 cdleme43bN 40447 cdleme43dN 40449 cdleme46f2g2 40450 cdleme46f2g1 40451 cdlemeg46c 40470 cdlemeg46nlpq 40474 cdlemeg46ngfr 40475 cdlemeg46rgv 40485 cdlemeg46gfv 40487 cdlemg2kq 40559 cdlemg4a 40565 cdlemg4d 40570 cdlemg4 40574 cdlemg8c 40586 cdlemg11aq 40595 cdlemg10a 40597 cdlemg12g 40606 cdlemg12 40607 cdlemg13 40609 cdlemg17pq 40629 cdlemg18b 40636 cdlemg18c 40637 cdlemg19 40641 cdlemg21 40643 cdlemk7 40805 cdlemk7u 40827 cdlemkfid1N 40878 dia2dimlem1 41021 dia2dimlem3 41023 dihjatcclem3 41377 dihjat 41380 |
Copyright terms: Public domain | W3C validator |