| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18406 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39356 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39282 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39282 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18406 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 joincjn 18272 Latclat 18390 Atomscatm 39256 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-join 18307 df-lat 18391 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: hlatj12 39364 hlatjrot 39366 hlatlej2 39369 atbtwnex 39442 3noncolr2 39443 hlatcon2 39446 3dimlem2 39453 3dimlem3 39455 3dimlem3OLDN 39456 3dimlem4 39458 3dimlem4OLDN 39459 ps-1 39471 hlatexch4 39475 lplnribN 39545 4atlem10 39600 4atlem11 39603 dalemswapyz 39650 dalem-cly 39665 dalemswapyzps 39684 dalem24 39691 dalem25 39692 dalem44 39710 2llnma1 39781 2llnma3r 39782 2llnma2rN 39784 llnexchb2 39863 dalawlem4 39868 dalawlem5 39869 dalawlem9 39873 dalawlem11 39875 dalawlem12 39876 dalawlem15 39879 4atexlemex2 40065 4atexlemcnd 40066 ltrncnv 40140 trlcnv 40159 cdlemc6 40190 cdleme7aa 40236 cdleme12 40265 cdleme15a 40268 cdleme15c 40270 cdleme17c 40282 cdlemeda 40292 cdleme19a 40297 cdleme19e 40301 cdleme20bN 40304 cdleme20g 40309 cdleme20m 40317 cdleme21c 40321 cdleme22f 40340 cdleme22g 40342 cdleme35b 40444 cdleme35f 40448 cdleme37m 40456 cdleme39a 40459 cdleme42h 40476 cdleme43aN 40483 cdleme43bN 40484 cdleme43dN 40486 cdleme46f2g2 40487 cdleme46f2g1 40488 cdlemeg46c 40507 cdlemeg46nlpq 40511 cdlemeg46ngfr 40512 cdlemeg46rgv 40522 cdlemeg46gfv 40524 cdlemg2kq 40596 cdlemg4a 40602 cdlemg4d 40607 cdlemg4 40611 cdlemg8c 40623 cdlemg11aq 40632 cdlemg10a 40634 cdlemg12g 40643 cdlemg12 40644 cdlemg13 40646 cdlemg17pq 40666 cdlemg18b 40673 cdlemg18c 40674 cdlemg19 40678 cdlemg21 40680 cdlemk7 40842 cdlemk7u 40864 cdlemkfid1N 40915 dia2dimlem1 41058 dia2dimlem3 41060 dihjatcclem3 41414 dihjat 41417 |
| Copyright terms: Public domain | W3C validator |