| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18353 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39472 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39398 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39398 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18353 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 joincjn 18217 Latclat 18337 Atomscatm 39372 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 |
| This theorem is referenced by: hlatj12 39480 hlatjrot 39482 hlatlej2 39485 atbtwnex 39557 3noncolr2 39558 hlatcon2 39561 3dimlem2 39568 3dimlem3 39570 3dimlem3OLDN 39571 3dimlem4 39573 3dimlem4OLDN 39574 ps-1 39586 hlatexch4 39590 lplnribN 39660 4atlem10 39715 4atlem11 39718 dalemswapyz 39765 dalem-cly 39780 dalemswapyzps 39799 dalem24 39806 dalem25 39807 dalem44 39825 2llnma1 39896 2llnma3r 39897 2llnma2rN 39899 llnexchb2 39978 dalawlem4 39983 dalawlem5 39984 dalawlem9 39988 dalawlem11 39990 dalawlem12 39991 dalawlem15 39994 4atexlemex2 40180 4atexlemcnd 40181 ltrncnv 40255 trlcnv 40274 cdlemc6 40305 cdleme7aa 40351 cdleme12 40380 cdleme15a 40383 cdleme15c 40385 cdleme17c 40397 cdlemeda 40407 cdleme19a 40412 cdleme19e 40416 cdleme20bN 40419 cdleme20g 40424 cdleme20m 40432 cdleme21c 40436 cdleme22f 40455 cdleme22g 40457 cdleme35b 40559 cdleme35f 40563 cdleme37m 40571 cdleme39a 40574 cdleme42h 40591 cdleme43aN 40598 cdleme43bN 40599 cdleme43dN 40601 cdleme46f2g2 40602 cdleme46f2g1 40603 cdlemeg46c 40622 cdlemeg46nlpq 40626 cdlemeg46ngfr 40627 cdlemeg46rgv 40637 cdlemeg46gfv 40639 cdlemg2kq 40711 cdlemg4a 40717 cdlemg4d 40722 cdlemg4 40726 cdlemg8c 40738 cdlemg11aq 40747 cdlemg10a 40749 cdlemg12g 40758 cdlemg12 40759 cdlemg13 40761 cdlemg17pq 40781 cdlemg18b 40788 cdlemg18c 40789 cdlemg19 40793 cdlemg21 40795 cdlemk7 40957 cdlemk7u 40979 cdlemkfid1N 41030 dia2dimlem1 41173 dia2dimlem3 41175 dihjatcclem3 41529 dihjat 41532 |
| Copyright terms: Public domain | W3C validator |