![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18396 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | β’ β¨ = (joinβπΎ) |
hlatjcom.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatjcom | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38221 | . 2 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2732 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | hlatjcom.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38147 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | 2, 3 | atbase 38147 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | hlatjcom.j | . . 3 β’ β¨ = (joinβπΎ) | |
7 | 2, 6 | latjcom 18396 | . 2 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) = (π β¨ π)) |
8 | 1, 4, 5, 7 | syl3an 1160 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 joincjn 18260 Latclat 18380 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-lub 18295 df-join 18297 df-lat 18381 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 |
This theorem is referenced by: hlatj12 38229 hlatjrot 38231 hlatlej2 38234 atbtwnex 38307 3noncolr2 38308 hlatcon2 38311 3dimlem2 38318 3dimlem3 38320 3dimlem3OLDN 38321 3dimlem4 38323 3dimlem4OLDN 38324 ps-1 38336 hlatexch4 38340 lplnribN 38410 4atlem10 38465 4atlem11 38468 dalemswapyz 38515 dalem-cly 38530 dalemswapyzps 38549 dalem24 38556 dalem25 38557 dalem44 38575 2llnma1 38646 2llnma3r 38647 2llnma2rN 38649 llnexchb2 38728 dalawlem4 38733 dalawlem5 38734 dalawlem9 38738 dalawlem11 38740 dalawlem12 38741 dalawlem15 38744 4atexlemex2 38930 4atexlemcnd 38931 ltrncnv 39005 trlcnv 39024 cdlemc6 39055 cdleme7aa 39101 cdleme12 39130 cdleme15a 39133 cdleme15c 39135 cdleme17c 39147 cdlemeda 39157 cdleme19a 39162 cdleme19e 39166 cdleme20bN 39169 cdleme20g 39174 cdleme20m 39182 cdleme21c 39186 cdleme22f 39205 cdleme22g 39207 cdleme35b 39309 cdleme35f 39313 cdleme37m 39321 cdleme39a 39324 cdleme42h 39341 cdleme43aN 39348 cdleme43bN 39349 cdleme43dN 39351 cdleme46f2g2 39352 cdleme46f2g1 39353 cdlemeg46c 39372 cdlemeg46nlpq 39376 cdlemeg46ngfr 39377 cdlemeg46rgv 39387 cdlemeg46gfv 39389 cdlemg2kq 39461 cdlemg4a 39467 cdlemg4d 39472 cdlemg4 39476 cdlemg8c 39488 cdlemg11aq 39497 cdlemg10a 39499 cdlemg12g 39508 cdlemg12 39509 cdlemg13 39511 cdlemg17pq 39531 cdlemg18b 39538 cdlemg18c 39539 cdlemg19 39543 cdlemg21 39545 cdlemk7 39707 cdlemk7u 39729 cdlemkfid1N 39780 dia2dimlem1 39923 dia2dimlem3 39925 dihjatcclem3 40279 dihjat 40282 |
Copyright terms: Public domain | W3C validator |