Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18210 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37419 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37345 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 37345 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 18210 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 joincjn 18074 Latclat 18194 Atomscatm 37319 HLchlt 37406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-lub 18109 df-join 18111 df-lat 18195 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 |
This theorem is referenced by: hlatj12 37427 hlatjrot 37429 hlatlej2 37432 atbtwnex 37504 3noncolr2 37505 hlatcon2 37508 3dimlem2 37515 3dimlem3 37517 3dimlem3OLDN 37518 3dimlem4 37520 3dimlem4OLDN 37521 ps-1 37533 hlatexch4 37537 lplnribN 37607 4atlem10 37662 4atlem11 37665 dalemswapyz 37712 dalem-cly 37727 dalemswapyzps 37746 dalem24 37753 dalem25 37754 dalem44 37772 2llnma1 37843 2llnma3r 37844 2llnma2rN 37846 llnexchb2 37925 dalawlem4 37930 dalawlem5 37931 dalawlem9 37935 dalawlem11 37937 dalawlem12 37938 dalawlem15 37941 4atexlemex2 38127 4atexlemcnd 38128 ltrncnv 38202 trlcnv 38221 cdlemc6 38252 cdleme7aa 38298 cdleme12 38327 cdleme15a 38330 cdleme15c 38332 cdleme17c 38344 cdlemeda 38354 cdleme19a 38359 cdleme19e 38363 cdleme20bN 38366 cdleme20g 38371 cdleme20m 38379 cdleme21c 38383 cdleme22f 38402 cdleme22g 38404 cdleme35b 38506 cdleme35f 38510 cdleme37m 38518 cdleme39a 38521 cdleme42h 38538 cdleme43aN 38545 cdleme43bN 38546 cdleme43dN 38548 cdleme46f2g2 38549 cdleme46f2g1 38550 cdlemeg46c 38569 cdlemeg46nlpq 38573 cdlemeg46ngfr 38574 cdlemeg46rgv 38584 cdlemeg46gfv 38586 cdlemg2kq 38658 cdlemg4a 38664 cdlemg4d 38669 cdlemg4 38673 cdlemg8c 38685 cdlemg11aq 38694 cdlemg10a 38696 cdlemg12g 38705 cdlemg12 38706 cdlemg13 38708 cdlemg17pq 38728 cdlemg18b 38735 cdlemg18c 38736 cdlemg19 38740 cdlemg21 38742 cdlemk7 38904 cdlemk7u 38926 cdlemkfid1N 38977 dia2dimlem1 39120 dia2dimlem3 39122 dihjatcclem3 39476 dihjat 39479 |
Copyright terms: Public domain | W3C validator |