| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version | ||
| Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18388 for atoms. (Contributed by NM, 15-Jun-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39349 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39275 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39275 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
| 6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | 2, 6 | latjcom 18388 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 8 | 1, 4, 5, 7 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 joincjn 18252 Latclat 18372 Atomscatm 39249 HLchlt 39336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-join 18287 df-lat 18373 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 |
| This theorem is referenced by: hlatj12 39357 hlatjrot 39359 hlatlej2 39362 atbtwnex 39435 3noncolr2 39436 hlatcon2 39439 3dimlem2 39446 3dimlem3 39448 3dimlem3OLDN 39449 3dimlem4 39451 3dimlem4OLDN 39452 ps-1 39464 hlatexch4 39468 lplnribN 39538 4atlem10 39593 4atlem11 39596 dalemswapyz 39643 dalem-cly 39658 dalemswapyzps 39677 dalem24 39684 dalem25 39685 dalem44 39703 2llnma1 39774 2llnma3r 39775 2llnma2rN 39777 llnexchb2 39856 dalawlem4 39861 dalawlem5 39862 dalawlem9 39866 dalawlem11 39868 dalawlem12 39869 dalawlem15 39872 4atexlemex2 40058 4atexlemcnd 40059 ltrncnv 40133 trlcnv 40152 cdlemc6 40183 cdleme7aa 40229 cdleme12 40258 cdleme15a 40261 cdleme15c 40263 cdleme17c 40275 cdlemeda 40285 cdleme19a 40290 cdleme19e 40294 cdleme20bN 40297 cdleme20g 40302 cdleme20m 40310 cdleme21c 40314 cdleme22f 40333 cdleme22g 40335 cdleme35b 40437 cdleme35f 40441 cdleme37m 40449 cdleme39a 40452 cdleme42h 40469 cdleme43aN 40476 cdleme43bN 40477 cdleme43dN 40479 cdleme46f2g2 40480 cdleme46f2g1 40481 cdlemeg46c 40500 cdlemeg46nlpq 40504 cdlemeg46ngfr 40505 cdlemeg46rgv 40515 cdlemeg46gfv 40517 cdlemg2kq 40589 cdlemg4a 40595 cdlemg4d 40600 cdlemg4 40604 cdlemg8c 40616 cdlemg11aq 40625 cdlemg10a 40627 cdlemg12g 40636 cdlemg12 40637 cdlemg13 40639 cdlemg17pq 40659 cdlemg18b 40666 cdlemg18c 40667 cdlemg19 40671 cdlemg21 40673 cdlemk7 40835 cdlemk7u 40857 cdlemkfid1N 40908 dia2dimlem1 41051 dia2dimlem3 41053 dihjatcclem3 41407 dihjat 41410 |
| Copyright terms: Public domain | W3C validator |