Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18146 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37356 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37282 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 37282 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 18146 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1158 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 joincjn 18010 Latclat 18130 Atomscatm 37256 HLchlt 37343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-lub 18045 df-join 18047 df-lat 18131 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 |
This theorem is referenced by: hlatj12 37364 hlatjrot 37366 hlatlej2 37369 atbtwnex 37441 3noncolr2 37442 hlatcon2 37445 3dimlem2 37452 3dimlem3 37454 3dimlem3OLDN 37455 3dimlem4 37457 3dimlem4OLDN 37458 ps-1 37470 hlatexch4 37474 lplnribN 37544 4atlem10 37599 4atlem11 37602 dalemswapyz 37649 dalem-cly 37664 dalemswapyzps 37683 dalem24 37690 dalem25 37691 dalem44 37709 2llnma1 37780 2llnma3r 37781 2llnma2rN 37783 llnexchb2 37862 dalawlem4 37867 dalawlem5 37868 dalawlem9 37872 dalawlem11 37874 dalawlem12 37875 dalawlem15 37878 4atexlemex2 38064 4atexlemcnd 38065 ltrncnv 38139 trlcnv 38158 cdlemc6 38189 cdleme7aa 38235 cdleme12 38264 cdleme15a 38267 cdleme15c 38269 cdleme17c 38281 cdlemeda 38291 cdleme19a 38296 cdleme19e 38300 cdleme20bN 38303 cdleme20g 38308 cdleme20m 38316 cdleme21c 38320 cdleme22f 38339 cdleme22g 38341 cdleme35b 38443 cdleme35f 38447 cdleme37m 38455 cdleme39a 38458 cdleme42h 38475 cdleme43aN 38482 cdleme43bN 38483 cdleme43dN 38485 cdleme46f2g2 38486 cdleme46f2g1 38487 cdlemeg46c 38506 cdlemeg46nlpq 38510 cdlemeg46ngfr 38511 cdlemeg46rgv 38521 cdlemeg46gfv 38523 cdlemg2kq 38595 cdlemg4a 38601 cdlemg4d 38606 cdlemg4 38610 cdlemg8c 38622 cdlemg11aq 38631 cdlemg10a 38633 cdlemg12g 38642 cdlemg12 38643 cdlemg13 38645 cdlemg17pq 38665 cdlemg18b 38672 cdlemg18c 38673 cdlemg19 38677 cdlemg21 38679 cdlemk7 38841 cdlemk7u 38863 cdlemkfid1N 38914 dia2dimlem1 39057 dia2dimlem3 39059 dihjatcclem3 39413 dihjat 39416 |
Copyright terms: Public domain | W3C validator |