| Step | Hyp | Ref
| Expression |
| 1 | | chpmatfval.c |
. 2
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 2 | | df-chpmat 22765 |
. . . 4
⊢
CharPlyMat = (𝑛 ∈ Fin,
𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) |
| 3 | 2 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))))) |
| 4 | | oveq12 7414 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
| 5 | | chpmatfval.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 6 | 4, 5 | eqtr4di 2788 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
| 7 | 6 | fveq2d 6880 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
| 8 | | chpmatfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 9 | 7, 8 | eqtr4di 2788 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
| 10 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
| 11 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 12 | 11 | fveq2d 6880 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 13 | | chpmatfval.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
| 14 | 12, 13 | eqtr4di 2788 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) = 𝑃) |
| 15 | 10, 14 | oveq12d 7423 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 maDet (Poly1‘𝑟)) = (𝑁 maDet 𝑃)) |
| 16 | | chpmatfval.d |
. . . . . . 7
⊢ 𝐷 = (𝑁 maDet 𝑃) |
| 17 | 15, 16 | eqtr4di 2788 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 maDet (Poly1‘𝑟)) = 𝐷) |
| 18 | | fveq2 6876 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 20 | 19, 13 | eqtr4di 2788 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) = 𝑃) |
| 21 | 10, 20 | oveq12d 7423 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = (𝑁 Mat 𝑃)) |
| 22 | | chpmatfval.y |
. . . . . . . . . 10
⊢ 𝑌 = (𝑁 Mat 𝑃) |
| 23 | 21, 22 | eqtr4di 2788 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = 𝑌) |
| 24 | 23 | fveq2d 6880 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (-g‘(𝑛 Mat
(Poly1‘𝑟))) = (-g‘𝑌)) |
| 25 | | chpmatfval.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
| 26 | 24, 25 | eqtr4di 2788 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (-g‘(𝑛 Mat
(Poly1‘𝑟))) = − ) |
| 27 | 23 | fveq2d 6880 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟))) = (
·𝑠 ‘𝑌)) |
| 28 | | chpmatfval.m |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑌) |
| 29 | 27, 28 | eqtr4di 2788 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟))) = · ) |
| 30 | | fveq2 6876 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (var1‘𝑟) = (var1‘𝑅)) |
| 31 | | chpmatfval.x |
. . . . . . . . . 10
⊢ 𝑋 = (var1‘𝑅) |
| 32 | 30, 31 | eqtr4di 2788 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (var1‘𝑟) = 𝑋) |
| 33 | 32 | adantl 481 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (var1‘𝑟) = 𝑋) |
| 34 | 23 | fveq2d 6880 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (1r‘(𝑛 Mat
(Poly1‘𝑟))) = (1r‘𝑌)) |
| 35 | | chpmatfval.i |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑌) |
| 36 | 34, 35 | eqtr4di 2788 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (1r‘(𝑛 Mat
(Poly1‘𝑟))) = 1 ) |
| 37 | 29, 33, 36 | oveq123d 7426 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟)))) = (𝑋 · 1 )) |
| 38 | | oveq12 7414 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 matToPolyMat 𝑟) = (𝑁 matToPolyMat 𝑅)) |
| 39 | | chpmatfval.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 40 | 38, 39 | eqtr4di 2788 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 matToPolyMat 𝑟) = 𝑇) |
| 41 | 40 | fveq1d 6878 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 matToPolyMat 𝑟)‘𝑚) = (𝑇‘𝑚)) |
| 42 | 26, 37, 41 | oveq123d 7426 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑚))) |
| 43 | 17, 42 | fveq12d 6883 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) |
| 44 | 9, 43 | mpteq12dv 5207 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 45 | 44 | adantl 481 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 46 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 47 | | elex 3480 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 48 | 47 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
| 49 | 8 | fvexi 6890 |
. . . 4
⊢ 𝐵 ∈ V |
| 50 | | mptexg 7213 |
. . . 4
⊢ (𝐵 ∈ V → (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) ∈ V) |
| 51 | 49, 50 | mp1i 13 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) ∈ V) |
| 52 | 3, 45, 46, 48, 51 | ovmpod 7559 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 CharPlyMat 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 53 | 1, 52 | eqtrid 2782 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |