Step | Hyp | Ref
| Expression |
1 | | chpmatfval.c |
. 2
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
2 | | df-chpmat 21527 |
. . . 4
⊢
CharPlyMat = (𝑛 ∈ Fin,
𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) |
3 | 2 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))))) |
4 | | oveq12 7159 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
5 | | chpmatfval.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | 4, 5 | eqtr4di 2811 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
7 | 6 | fveq2d 6662 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
8 | | chpmatfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
9 | 7, 8 | eqtr4di 2811 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
10 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
11 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
12 | 11 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
13 | | chpmatfval.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
14 | 12, 13 | eqtr4di 2811 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) = 𝑃) |
15 | 10, 14 | oveq12d 7168 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 maDet (Poly1‘𝑟)) = (𝑁 maDet 𝑃)) |
16 | | chpmatfval.d |
. . . . . . 7
⊢ 𝐷 = (𝑁 maDet 𝑃) |
17 | 15, 16 | eqtr4di 2811 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 maDet (Poly1‘𝑟)) = 𝐷) |
18 | | fveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
19 | 18 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
20 | 19, 13 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) = 𝑃) |
21 | 10, 20 | oveq12d 7168 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = (𝑁 Mat 𝑃)) |
22 | | chpmatfval.y |
. . . . . . . . . 10
⊢ 𝑌 = (𝑁 Mat 𝑃) |
23 | 21, 22 | eqtr4di 2811 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = 𝑌) |
24 | 23 | fveq2d 6662 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (-g‘(𝑛 Mat
(Poly1‘𝑟))) = (-g‘𝑌)) |
25 | | chpmatfval.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
26 | 24, 25 | eqtr4di 2811 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (-g‘(𝑛 Mat
(Poly1‘𝑟))) = − ) |
27 | 23 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟))) = (
·𝑠 ‘𝑌)) |
28 | | chpmatfval.m |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑌) |
29 | 27, 28 | eqtr4di 2811 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟))) = · ) |
30 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (var1‘𝑟) = (var1‘𝑅)) |
31 | | chpmatfval.x |
. . . . . . . . . 10
⊢ 𝑋 = (var1‘𝑅) |
32 | 30, 31 | eqtr4di 2811 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (var1‘𝑟) = 𝑋) |
33 | 32 | adantl 485 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (var1‘𝑟) = 𝑋) |
34 | 23 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (1r‘(𝑛 Mat
(Poly1‘𝑟))) = (1r‘𝑌)) |
35 | | chpmatfval.i |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑌) |
36 | 34, 35 | eqtr4di 2811 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (1r‘(𝑛 Mat
(Poly1‘𝑟))) = 1 ) |
37 | 29, 33, 36 | oveq123d 7171 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟)))) = (𝑋 · 1 )) |
38 | | oveq12 7159 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 matToPolyMat 𝑟) = (𝑁 matToPolyMat 𝑅)) |
39 | | chpmatfval.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
40 | 38, 39 | eqtr4di 2811 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 matToPolyMat 𝑟) = 𝑇) |
41 | 40 | fveq1d 6660 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 matToPolyMat 𝑟)‘𝑚) = (𝑇‘𝑚)) |
42 | 26, 37, 41 | oveq123d 7171 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑚))) |
43 | 17, 42 | fveq12d 6665 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) |
44 | 9, 43 | mpteq12dv 5117 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
45 | 44 | adantl 485 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
46 | | simpl 486 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
47 | | elex 3428 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
48 | 47 | adantl 485 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
49 | 8 | fvexi 6672 |
. . . 4
⊢ 𝐵 ∈ V |
50 | | mptexg 6975 |
. . . 4
⊢ (𝐵 ∈ V → (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) ∈ V) |
51 | 49, 50 | mp1i 13 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚)))) ∈ V) |
52 | 3, 45, 46, 48, 51 | ovmpod 7297 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 CharPlyMat 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
53 | 1, 52 | syl5eq 2805 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |