| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
| chpmatfval.s | ⊢ − = (-g‘𝑌) |
| chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
| Ref | Expression |
|---|---|
| chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
| 7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22715 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 14 | fveq2 6822 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
| 15 | 14 | oveq2d 7365 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
| 16 | 15 | fveq2d 6826 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 18 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 19 | fvexd 6837 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
| 20 | 13, 17, 18, 19 | fvmptd 6937 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 Basecbs 17120 ·𝑠 cvsca 17165 -gcsg 18814 1rcur 20066 var1cv1 22058 Poly1cpl1 22059 Mat cmat 22292 maDet cmdat 22469 matToPolyMat cmat2pmat 22589 CharPlyMat cchpmat 22711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-chpmat 22712 |
| This theorem is referenced by: chpmatply1 22717 chpmatval2 22718 chpmat0d 22719 chpmat1d 22721 chpdmat 22726 cpmadurid 22752 cpmidgsum2 22764 |
| Copyright terms: Public domain | W3C validator |