| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
| chpmatfval.s | ⊢ − = (-g‘𝑌) |
| chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
| Ref | Expression |
|---|---|
| chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
| 7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22693 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 14 | fveq2 6840 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
| 15 | 14 | oveq2d 7385 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
| 16 | 15 | fveq2d 6844 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 18 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 19 | fvexd 6855 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
| 20 | 13, 17, 18, 19 | fvmptd 6957 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 Basecbs 17155 ·𝑠 cvsca 17200 -gcsg 18843 1rcur 20066 var1cv1 22036 Poly1cpl1 22037 Mat cmat 22270 maDet cmdat 22447 matToPolyMat cmat2pmat 22567 CharPlyMat cchpmat 22689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-chpmat 22690 |
| This theorem is referenced by: chpmatply1 22695 chpmatval2 22696 chpmat0d 22697 chpmat1d 22699 chpdmat 22704 cpmadurid 22730 cpmidgsum2 22742 |
| Copyright terms: Public domain | W3C validator |