MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmatval Structured version   Visualization version   GIF version

Theorem chpmatval 22858
Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
chpmatfval.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmatfval.a 𝐴 = (𝑁 Mat 𝑅)
chpmatfval.b 𝐵 = (Base‘𝐴)
chpmatfval.p 𝑃 = (Poly1𝑅)
chpmatfval.y 𝑌 = (𝑁 Mat 𝑃)
chpmatfval.d 𝐷 = (𝑁 maDet 𝑃)
chpmatfval.s = (-g𝑌)
chpmatfval.x 𝑋 = (var1𝑅)
chpmatfval.m · = ( ·𝑠𝑌)
chpmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chpmatfval.i 1 = (1r𝑌)
Assertion
Ref Expression
chpmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))

Proof of Theorem chpmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 chpmatfval.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chpmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 chpmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 chpmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 chpmatfval.y . . . 4 𝑌 = (𝑁 Mat 𝑃)
6 chpmatfval.d . . . 4 𝐷 = (𝑁 maDet 𝑃)
7 chpmatfval.s . . . 4 = (-g𝑌)
8 chpmatfval.x . . . 4 𝑋 = (var1𝑅)
9 chpmatfval.m . . . 4 · = ( ·𝑠𝑌)
10 chpmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
11 chpmatfval.i . . . 4 1 = (1r𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatfval 22857 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
13123adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
14 fveq2 6920 . . . . 5 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
1514oveq2d 7464 . . . 4 (𝑚 = 𝑀 → ((𝑋 · 1 ) (𝑇𝑚)) = ((𝑋 · 1 ) (𝑇𝑀)))
1615fveq2d 6924 . . 3 (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
1716adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
18 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
19 fvexd 6935 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐷‘((𝑋 · 1 ) (𝑇𝑀))) ∈ V)
2013, 17, 18, 19fvmptd 7036 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258   ·𝑠 cvsca 17315  -gcsg 18975  1rcur 20208  var1cv1 22198  Poly1cpl1 22199   Mat cmat 22432   maDet cmdat 22611   matToPolyMat cmat2pmat 22731   CharPlyMat cchpmat 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-chpmat 22854
This theorem is referenced by:  chpmatply1  22859  chpmatval2  22860  chpmat0d  22861  chpmat1d  22863  chpdmat  22868  cpmadurid  22894  cpmidgsum2  22906
  Copyright terms: Public domain W3C validator