| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
| chpmatfval.s | ⊢ − = (-g‘𝑌) |
| chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
| Ref | Expression |
|---|---|
| chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
| 7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22745 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 14 | fveq2 6822 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
| 15 | 14 | oveq2d 7362 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
| 16 | 15 | fveq2d 6826 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 18 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 19 | fvexd 6837 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
| 20 | 13, 17, 18, 19 | fvmptd 6936 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 ·𝑠 cvsca 17165 -gcsg 18848 1rcur 20099 var1cv1 22088 Poly1cpl1 22089 Mat cmat 22322 maDet cmdat 22499 matToPolyMat cmat2pmat 22619 CharPlyMat cchpmat 22741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-chpmat 22742 |
| This theorem is referenced by: chpmatply1 22747 chpmatval2 22748 chpmat0d 22749 chpmat1d 22751 chpdmat 22756 cpmadurid 22782 cpmidgsum2 22794 |
| Copyright terms: Public domain | W3C validator |