![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
chpmatfval.s | ⊢ − = (-g‘𝑌) |
chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
Ref | Expression |
---|---|
chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22852 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
13 | 12 | 3adant3 1131 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
14 | fveq2 6907 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
15 | 14 | oveq2d 7447 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
16 | 15 | fveq2d 6911 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
18 | simp3 1137 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
19 | fvexd 6922 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
20 | 13, 17, 18, 19 | fvmptd 7023 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 ·𝑠 cvsca 17302 -gcsg 18966 1rcur 20199 var1cv1 22193 Poly1cpl1 22194 Mat cmat 22427 maDet cmdat 22606 matToPolyMat cmat2pmat 22726 CharPlyMat cchpmat 22848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-chpmat 22849 |
This theorem is referenced by: chpmatply1 22854 chpmatval2 22855 chpmat0d 22856 chpmat1d 22858 chpdmat 22863 cpmadurid 22889 cpmidgsum2 22901 |
Copyright terms: Public domain | W3C validator |