| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
| chpmatfval.s | ⊢ − = (-g‘𝑌) |
| chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
| Ref | Expression |
|---|---|
| chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
| 7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22723 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
| 14 | fveq2 6860 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
| 15 | 14 | oveq2d 7405 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
| 16 | 15 | fveq2d 6864 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 18 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 19 | fvexd 6875 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
| 20 | 13, 17, 18, 19 | fvmptd 6977 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 Basecbs 17185 ·𝑠 cvsca 17230 -gcsg 18873 1rcur 20096 var1cv1 22066 Poly1cpl1 22067 Mat cmat 22300 maDet cmdat 22477 matToPolyMat cmat2pmat 22597 CharPlyMat cchpmat 22719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-chpmat 22720 |
| This theorem is referenced by: chpmatply1 22725 chpmatval2 22726 chpmat0d 22727 chpmat1d 22729 chpdmat 22734 cpmadurid 22760 cpmidgsum2 22772 |
| Copyright terms: Public domain | W3C validator |