MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmatval Structured version   Visualization version   GIF version

Theorem chpmatval 21990
Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
chpmatfval.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmatfval.a 𝐴 = (𝑁 Mat 𝑅)
chpmatfval.b 𝐵 = (Base‘𝐴)
chpmatfval.p 𝑃 = (Poly1𝑅)
chpmatfval.y 𝑌 = (𝑁 Mat 𝑃)
chpmatfval.d 𝐷 = (𝑁 maDet 𝑃)
chpmatfval.s = (-g𝑌)
chpmatfval.x 𝑋 = (var1𝑅)
chpmatfval.m · = ( ·𝑠𝑌)
chpmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chpmatfval.i 1 = (1r𝑌)
Assertion
Ref Expression
chpmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))

Proof of Theorem chpmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 chpmatfval.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chpmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 chpmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 chpmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 chpmatfval.y . . . 4 𝑌 = (𝑁 Mat 𝑃)
6 chpmatfval.d . . . 4 𝐷 = (𝑁 maDet 𝑃)
7 chpmatfval.s . . . 4 = (-g𝑌)
8 chpmatfval.x . . . 4 𝑋 = (var1𝑅)
9 chpmatfval.m . . . 4 · = ( ·𝑠𝑌)
10 chpmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
11 chpmatfval.i . . . 4 1 = (1r𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatfval 21989 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
13123adant3 1131 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
14 fveq2 6766 . . . . 5 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
1514oveq2d 7283 . . . 4 (𝑚 = 𝑀 → ((𝑋 · 1 ) (𝑇𝑚)) = ((𝑋 · 1 ) (𝑇𝑀)))
1615fveq2d 6770 . . 3 (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
1716adantl 482 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
18 simp3 1137 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
19 fvexd 6781 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐷‘((𝑋 · 1 ) (𝑇𝑀))) ∈ V)
2013, 17, 18, 19fvmptd 6874 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3429  cmpt 5156  cfv 6426  (class class class)co 7267  Fincfn 8720  Basecbs 16922   ·𝑠 cvsca 16976  -gcsg 18589  1rcur 19747  var1cv1 21357  Poly1cpl1 21358   Mat cmat 21564   maDet cmdat 21743   matToPolyMat cmat2pmat 21863   CharPlyMat cchpmat 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-chpmat 21986
This theorem is referenced by:  chpmatply1  21991  chpmatval2  21992  chpmat0d  21993  chpmat1d  21995  chpdmat  22000  cpmadurid  22026  cpmidgsum2  22038
  Copyright terms: Public domain W3C validator