![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpmatval | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
chpmatfval.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
chpmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpmatfval.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chpmatfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑃) |
chpmatfval.s | ⊢ − = (-g‘𝑌) |
chpmatfval.x | ⊢ 𝑋 = (var1‘𝑅) |
chpmatfval.m | ⊢ · = ( ·𝑠 ‘𝑌) |
chpmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chpmatfval.i | ⊢ 1 = (1r‘𝑌) |
Ref | Expression |
---|---|
chpmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatfval.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chpmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | chpmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | chpmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | chpmatfval.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | chpmatfval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑃) | |
7 | chpmatfval.s | . . . 4 ⊢ − = (-g‘𝑌) | |
8 | chpmatfval.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
9 | chpmatfval.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | chpmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
11 | chpmatfval.i | . . . 4 ⊢ 1 = (1r‘𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatfval 22857 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) |
14 | fveq2 6920 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑇‘𝑚) = (𝑇‘𝑀)) | |
15 | 14 | oveq2d 7464 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑋 · 1 ) − (𝑇‘𝑚)) = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
16 | 15 | fveq2d 6924 | . . 3 ⊢ (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
18 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
19 | fvexd 6935 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀))) ∈ V) | |
20 | 13, 17, 18, 19 | fvmptd 7036 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 ·𝑠 cvsca 17315 -gcsg 18975 1rcur 20208 var1cv1 22198 Poly1cpl1 22199 Mat cmat 22432 maDet cmdat 22611 matToPolyMat cmat2pmat 22731 CharPlyMat cchpmat 22853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-chpmat 22854 |
This theorem is referenced by: chpmatply1 22859 chpmatval2 22860 chpmat0d 22861 chpmat1d 22863 chpdmat 22868 cpmadurid 22894 cpmidgsum2 22906 |
Copyright terms: Public domain | W3C validator |