MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmatval Structured version   Visualization version   GIF version

Theorem chpmatval 22853
Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
chpmatfval.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmatfval.a 𝐴 = (𝑁 Mat 𝑅)
chpmatfval.b 𝐵 = (Base‘𝐴)
chpmatfval.p 𝑃 = (Poly1𝑅)
chpmatfval.y 𝑌 = (𝑁 Mat 𝑃)
chpmatfval.d 𝐷 = (𝑁 maDet 𝑃)
chpmatfval.s = (-g𝑌)
chpmatfval.x 𝑋 = (var1𝑅)
chpmatfval.m · = ( ·𝑠𝑌)
chpmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chpmatfval.i 1 = (1r𝑌)
Assertion
Ref Expression
chpmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))

Proof of Theorem chpmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 chpmatfval.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chpmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 chpmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 chpmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 chpmatfval.y . . . 4 𝑌 = (𝑁 Mat 𝑃)
6 chpmatfval.d . . . 4 𝐷 = (𝑁 maDet 𝑃)
7 chpmatfval.s . . . 4 = (-g𝑌)
8 chpmatfval.x . . . 4 𝑋 = (var1𝑅)
9 chpmatfval.m . . . 4 · = ( ·𝑠𝑌)
10 chpmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
11 chpmatfval.i . . . 4 1 = (1r𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatfval 22852 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
13123adant3 1131 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))
14 fveq2 6907 . . . . 5 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
1514oveq2d 7447 . . . 4 (𝑚 = 𝑀 → ((𝑋 · 1 ) (𝑇𝑚)) = ((𝑋 · 1 ) (𝑇𝑀)))
1615fveq2d 6911 . . 3 (𝑚 = 𝑀 → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
1716adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝐷‘((𝑋 · 1 ) (𝑇𝑚))) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
18 simp3 1137 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
19 fvexd 6922 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐷‘((𝑋 · 1 ) (𝑇𝑀))) ∈ V)
2013, 17, 18, 19fvmptd 7023 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245   ·𝑠 cvsca 17302  -gcsg 18966  1rcur 20199  var1cv1 22193  Poly1cpl1 22194   Mat cmat 22427   maDet cmdat 22606   matToPolyMat cmat2pmat 22726   CharPlyMat cchpmat 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-chpmat 22849
This theorem is referenced by:  chpmatply1  22854  chpmatval2  22855  chpmat0d  22856  chpmat1d  22858  chpdmat  22863  cpmadurid  22889  cpmidgsum2  22901
  Copyright terms: Public domain W3C validator