HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Structured version   Visualization version   GIF version

Theorem chscllem1 29416
Description: Lemma for chscl 29420. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem1 (𝜑𝐹:ℕ⟶𝐴)
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛))
2 chscl.1 . . . . . 6 (𝜑𝐴C )
32adantr 483 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴C )
4 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
54ffvelrnda 6853 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + 𝐵))
6 chscl.2 . . . . . . . . . 10 (𝜑𝐵C )
7 chsh 29003 . . . . . . . . . 10 (𝐵C𝐵S )
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵S )
9 chsh 29003 . . . . . . . . . . 11 (𝐴C𝐴S )
102, 9syl 17 . . . . . . . . . 10 (𝜑𝐴S )
11 shocsh 29063 . . . . . . . . . 10 (𝐴S → (⊥‘𝐴) ∈ S )
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐴) ∈ S )
13 chscl.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (⊥‘𝐴))
14 shless 29138 . . . . . . . . 9 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
158, 12, 10, 13, 14syl31anc 1369 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
16 shscom 29098 . . . . . . . . 9 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1710, 8, 16syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
18 shscom 29098 . . . . . . . . 9 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
1910, 12, 18syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2015, 17, 193sstr4d 4016 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
2120sselda 3969 . . . . . 6 ((𝜑 ∧ (𝐻𝑛) ∈ (𝐴 + 𝐵)) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
225, 21syldan 593 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
23 pjpreeq 29177 . . . . 5 ((𝐴C ∧ (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
243, 22, 23syl2anc 586 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
251, 24mpbii 235 . . 3 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥)))
2625simpld 497 . 2 ((𝜑𝑛 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴)
27 chscl.6 . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
2826, 27fmptd 6880 1 (𝜑𝐹:ℕ⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  wss 3938   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cn 11640   + cva 28699  𝑣 chli 28706   S csh 28707   C cch 28708  cort 28709   + cph 28710  projcpjh 28716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-grpo 28272  df-ablo 28324  df-hvsub 28750  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032  df-shs 29087  df-pjh 29174
This theorem is referenced by:  chscllem2  29417  chscllem3  29418  chscllem4  29419
  Copyright terms: Public domain W3C validator