| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chscllem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for chscl 31627. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chscl.1 | ⊢ (𝜑 → 𝐴 ∈ Cℋ ) |
| chscl.2 | ⊢ (𝜑 → 𝐵 ∈ Cℋ ) |
| chscl.3 | ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) |
| chscl.4 | ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) |
| chscl.5 | ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) |
| chscl.6 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) |
| Ref | Expression |
|---|---|
| chscllem1 | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) | |
| 2 | chscl.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cℋ ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ Cℋ ) |
| 4 | chscl.4 | . . . . . . 7 ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) | |
| 5 | 4 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) |
| 6 | chscl.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ Cℋ ) | |
| 7 | chsh 31210 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Sℋ ) |
| 9 | chsh 31210 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ Sℋ ) |
| 11 | shocsh 31270 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⊥‘𝐴) ∈ Sℋ ) |
| 13 | chscl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) | |
| 14 | shless 31345 | . . . . . . . . 9 ⊢ (((𝐵 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) | |
| 15 | 8, 12, 10, 13, 14 | syl31anc 1375 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) |
| 16 | shscom 31305 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | |
| 17 | 10, 8, 16 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| 18 | shscom 31305 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ) → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) | |
| 19 | 10, 12, 18 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) |
| 20 | 15, 17, 19 | 3sstr4d 4019 | . . . . . . 7 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ⊆ (𝐴 +ℋ (⊥‘𝐴))) |
| 21 | 20 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 22 | 5, 21 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 23 | pjpreeq 31384 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) | |
| 24 | 3, 22, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) |
| 25 | 1, 24 | mpbii 233 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥))) |
| 26 | 25 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴) |
| 27 | chscl.6 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) | |
| 28 | 26, 27 | fmptd 7109 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℕcn 12245 +ℎ cva 30906 ⇝𝑣 chli 30913 Sℋ csh 30914 Cℋ cch 30915 ⊥cort 30916 +ℋ cph 30917 projℎcpjh 30923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-grpo 30479 df-ablo 30531 df-hvsub 30957 df-sh 31193 df-ch 31207 df-oc 31238 df-ch0 31239 df-shs 31294 df-pjh 31381 |
| This theorem is referenced by: chscllem2 31624 chscllem3 31625 chscllem4 31626 |
| Copyright terms: Public domain | W3C validator |