HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Structured version   Visualization version   GIF version

Theorem chscllem1 29672
Description: Lemma for chscl 29676. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem1 (𝜑𝐹:ℕ⟶𝐴)
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛))
2 chscl.1 . . . . . 6 (𝜑𝐴C )
32adantr 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴C )
4 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
54ffvelrnda 6882 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + 𝐵))
6 chscl.2 . . . . . . . . . 10 (𝜑𝐵C )
7 chsh 29259 . . . . . . . . . 10 (𝐵C𝐵S )
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵S )
9 chsh 29259 . . . . . . . . . . 11 (𝐴C𝐴S )
102, 9syl 17 . . . . . . . . . 10 (𝜑𝐴S )
11 shocsh 29319 . . . . . . . . . 10 (𝐴S → (⊥‘𝐴) ∈ S )
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐴) ∈ S )
13 chscl.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (⊥‘𝐴))
14 shless 29394 . . . . . . . . 9 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
158, 12, 10, 13, 14syl31anc 1375 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
16 shscom 29354 . . . . . . . . 9 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1710, 8, 16syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
18 shscom 29354 . . . . . . . . 9 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
1910, 12, 18syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2015, 17, 193sstr4d 3934 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
2120sselda 3887 . . . . . 6 ((𝜑 ∧ (𝐻𝑛) ∈ (𝐴 + 𝐵)) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
225, 21syldan 594 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
23 pjpreeq 29433 . . . . 5 ((𝐴C ∧ (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
243, 22, 23syl2anc 587 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
251, 24mpbii 236 . . 3 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥)))
2625simpld 498 . 2 ((𝜑𝑛 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴)
27 chscl.6 . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
2826, 27fmptd 6909 1 (𝜑𝐹:ℕ⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  wss 3853   class class class wbr 5039  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  cn 11795   + cva 28955  𝑣 chli 28962   S csh 28963   C cch 28964  cort 28965   + cph 28966  projcpjh 28972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-hilex 29034  ax-hfvadd 29035  ax-hvcom 29036  ax-hvass 29037  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvmulass 29042  ax-hvdistr1 29043  ax-hvdistr2 29044  ax-hvmul0 29045  ax-hfi 29114  ax-his2 29118  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-grpo 28528  df-ablo 28580  df-hvsub 29006  df-sh 29242  df-ch 29256  df-oc 29287  df-ch0 29288  df-shs 29343  df-pjh 29430
This theorem is referenced by:  chscllem2  29673  chscllem3  29674  chscllem4  29675
  Copyright terms: Public domain W3C validator