| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chscllem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for chscl 31585. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chscl.1 | ⊢ (𝜑 → 𝐴 ∈ Cℋ ) |
| chscl.2 | ⊢ (𝜑 → 𝐵 ∈ Cℋ ) |
| chscl.3 | ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) |
| chscl.4 | ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) |
| chscl.5 | ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) |
| chscl.6 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) |
| Ref | Expression |
|---|---|
| chscllem1 | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) | |
| 2 | chscl.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cℋ ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ Cℋ ) |
| 4 | chscl.4 | . . . . . . 7 ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) | |
| 5 | 4 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) |
| 6 | chscl.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ Cℋ ) | |
| 7 | chsh 31168 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Sℋ ) |
| 9 | chsh 31168 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ Sℋ ) |
| 11 | shocsh 31228 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⊥‘𝐴) ∈ Sℋ ) |
| 13 | chscl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) | |
| 14 | shless 31303 | . . . . . . . . 9 ⊢ (((𝐵 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) | |
| 15 | 8, 12, 10, 13, 14 | syl31anc 1375 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) |
| 16 | shscom 31263 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | |
| 17 | 10, 8, 16 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| 18 | shscom 31263 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ) → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) | |
| 19 | 10, 12, 18 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) |
| 20 | 15, 17, 19 | 3sstr4d 3991 | . . . . . . 7 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ⊆ (𝐴 +ℋ (⊥‘𝐴))) |
| 21 | 20 | sselda 3935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 22 | 5, 21 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 23 | pjpreeq 31342 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) | |
| 24 | 3, 22, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) |
| 25 | 1, 24 | mpbii 233 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥))) |
| 26 | 25 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴) |
| 27 | chscl.6 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) | |
| 28 | 26, 27 | fmptd 7048 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℕcn 12128 +ℎ cva 30864 ⇝𝑣 chli 30871 Sℋ csh 30872 Cℋ cch 30873 ⊥cort 30874 +ℋ cph 30875 projℎcpjh 30881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his2 31027 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-grpo 30437 df-ablo 30489 df-hvsub 30915 df-sh 31151 df-ch 31165 df-oc 31196 df-ch0 31197 df-shs 31252 df-pjh 31339 |
| This theorem is referenced by: chscllem2 31582 chscllem3 31583 chscllem4 31584 |
| Copyright terms: Public domain | W3C validator |