HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Structured version   Visualization version   GIF version

Theorem chscllem1 31623
Description: Lemma for chscl 31627. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem1 (𝜑𝐹:ℕ⟶𝐴)
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛))
2 chscl.1 . . . . . 6 (𝜑𝐴C )
32adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴C )
4 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
54ffvelcdmda 7079 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + 𝐵))
6 chscl.2 . . . . . . . . . 10 (𝜑𝐵C )
7 chsh 31210 . . . . . . . . . 10 (𝐵C𝐵S )
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵S )
9 chsh 31210 . . . . . . . . . . 11 (𝐴C𝐴S )
102, 9syl 17 . . . . . . . . . 10 (𝜑𝐴S )
11 shocsh 31270 . . . . . . . . . 10 (𝐴S → (⊥‘𝐴) ∈ S )
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐴) ∈ S )
13 chscl.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (⊥‘𝐴))
14 shless 31345 . . . . . . . . 9 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
158, 12, 10, 13, 14syl31anc 1375 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
16 shscom 31305 . . . . . . . . 9 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1710, 8, 16syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
18 shscom 31305 . . . . . . . . 9 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
1910, 12, 18syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2015, 17, 193sstr4d 4019 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
2120sselda 3963 . . . . . 6 ((𝜑 ∧ (𝐻𝑛) ∈ (𝐴 + 𝐵)) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
225, 21syldan 591 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
23 pjpreeq 31384 . . . . 5 ((𝐴C ∧ (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
243, 22, 23syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
251, 24mpbii 233 . . 3 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥)))
2625simpld 494 . 2 ((𝜑𝑛 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴)
27 chscl.6 . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
2826, 27fmptd 7109 1 (𝜑𝐹:ℕ⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cn 12245   + cva 30906  𝑣 chli 30913   S csh 30914   C cch 30915  cort 30916   + cph 30917  projcpjh 30923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his2 31069  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-grpo 30479  df-ablo 30531  df-hvsub 30957  df-sh 31193  df-ch 31207  df-oc 31238  df-ch0 31239  df-shs 31294  df-pjh 31381
This theorem is referenced by:  chscllem2  31624  chscllem3  31625  chscllem4  31626
  Copyright terms: Public domain W3C validator