| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chscllem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for chscl 31570. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chscl.1 | ⊢ (𝜑 → 𝐴 ∈ Cℋ ) |
| chscl.2 | ⊢ (𝜑 → 𝐵 ∈ Cℋ ) |
| chscl.3 | ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) |
| chscl.4 | ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) |
| chscl.5 | ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) |
| chscl.6 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) |
| Ref | Expression |
|---|---|
| chscllem1 | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) | |
| 2 | chscl.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cℋ ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ Cℋ ) |
| 4 | chscl.4 | . . . . . . 7 ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) | |
| 5 | 4 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) |
| 6 | chscl.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ Cℋ ) | |
| 7 | chsh 31153 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Sℋ ) |
| 9 | chsh 31153 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ Sℋ ) |
| 11 | shocsh 31213 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⊥‘𝐴) ∈ Sℋ ) |
| 13 | chscl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) | |
| 14 | shless 31288 | . . . . . . . . 9 ⊢ (((𝐵 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) | |
| 15 | 8, 12, 10, 13, 14 | syl31anc 1375 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 +ℋ 𝐴) ⊆ ((⊥‘𝐴) +ℋ 𝐴)) |
| 16 | shscom 31248 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | |
| 17 | 10, 8, 16 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| 18 | shscom 31248 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ (⊥‘𝐴) ∈ Sℋ ) → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) | |
| 19 | 10, 12, 18 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℋ (⊥‘𝐴)) = ((⊥‘𝐴) +ℋ 𝐴)) |
| 20 | 15, 17, 19 | 3sstr4d 4002 | . . . . . . 7 ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ⊆ (𝐴 +ℋ (⊥‘𝐴))) |
| 21 | 20 | sselda 3946 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ 𝐵)) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 22 | 5, 21 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) |
| 23 | pjpreeq 31327 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐻‘𝑛) ∈ (𝐴 +ℋ (⊥‘𝐴))) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) | |
| 24 | 3, 22, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) = ((projℎ‘𝐴)‘(𝐻‘𝑛)) ↔ (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥)))) |
| 25 | 1, 24 | mpbii 233 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻‘𝑛) = (((projℎ‘𝐴)‘(𝐻‘𝑛)) +ℎ 𝑥))) |
| 26 | 25 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((projℎ‘𝐴)‘(𝐻‘𝑛)) ∈ 𝐴) |
| 27 | chscl.6 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) | |
| 28 | 26, 27 | fmptd 7086 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℕcn 12186 +ℎ cva 30849 ⇝𝑣 chli 30856 Sℋ csh 30857 Cℋ cch 30858 ⊥cort 30859 +ℋ cph 30860 projℎcpjh 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his2 31012 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-grpo 30422 df-ablo 30474 df-hvsub 30900 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-shs 31237 df-pjh 31324 |
| This theorem is referenced by: chscllem2 31567 chscllem3 31568 chscllem4 31569 |
| Copyright terms: Public domain | W3C validator |