HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Structured version   Visualization version   GIF version

Theorem chscllem1 29198
Description: Lemma for chscl 29202. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem1 (𝜑𝐹:ℕ⟶𝐴)
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . 4 ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛))
2 chscl.1 . . . . . 6 (𝜑𝐴C )
32adantr 473 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴C )
4 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
54ffvelrnda 6678 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + 𝐵))
6 chscl.2 . . . . . . . . . 10 (𝜑𝐵C )
7 chsh 28783 . . . . . . . . . 10 (𝐵C𝐵S )
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵S )
9 chsh 28783 . . . . . . . . . . 11 (𝐴C𝐴S )
102, 9syl 17 . . . . . . . . . 10 (𝜑𝐴S )
11 shocsh 28845 . . . . . . . . . 10 (𝐴S → (⊥‘𝐴) ∈ S )
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐴) ∈ S )
13 chscl.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (⊥‘𝐴))
14 shless 28920 . . . . . . . . 9 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
158, 12, 10, 13, 14syl31anc 1353 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
16 shscom 28880 . . . . . . . . 9 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1710, 8, 16syl2anc 576 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
18 shscom 28880 . . . . . . . . 9 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
1910, 12, 18syl2anc 576 . . . . . . . 8 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2015, 17, 193sstr4d 3906 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
2120sselda 3860 . . . . . 6 ((𝜑 ∧ (𝐻𝑛) ∈ (𝐴 + 𝐵)) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
225, 21syldan 582 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
23 pjpreeq 28959 . . . . 5 ((𝐴C ∧ (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
243, 22, 23syl2anc 576 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
251, 24mpbii 225 . . 3 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥)))
2625simpld 487 . 2 ((𝜑𝑛 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴)
27 chscl.6 . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
2826, 27fmptd 6703 1 (𝜑𝐹:ℕ⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wrex 3089  wss 3831   class class class wbr 4930  cmpt 5009  wf 6186  cfv 6190  (class class class)co 6978  cn 11441   + cva 28479  𝑣 chli 28486   S csh 28487   C cch 28488  cort 28489   + cph 28490  projcpjh 28496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-hilex 28558  ax-hfvadd 28559  ax-hvcom 28560  ax-hvass 28561  ax-hv0cl 28562  ax-hvaddid 28563  ax-hfvmul 28564  ax-hvmulid 28565  ax-hvmulass 28566  ax-hvdistr1 28567  ax-hvdistr2 28568  ax-hvmul0 28569  ax-hfi 28638  ax-his2 28642  ax-his3 28643  ax-his4 28644
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-po 5327  df-so 5328  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-grpo 28050  df-ablo 28102  df-hvsub 28530  df-sh 28766  df-ch 28780  df-oc 28811  df-ch0 28812  df-shs 28869  df-pjh 28956
This theorem is referenced by:  chscllem2  29199  chscllem3  29200  chscllem4  29201
  Copyright terms: Public domain W3C validator