![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjoi0 | Structured version Visualization version GIF version |
Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoi0 | β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ πΊ β (β₯βπ»)) β (((projββπΊ)βπ΄) Β·ih ((projββπ»)βπ΄)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjrn 31215 | . . . . . 6 β’ (πΊ β Cβ β ran (projββπΊ) = πΊ) | |
2 | 1 | adantr 481 | . . . . 5 β’ ((πΊ β Cβ β§ π» β Cβ ) β ran (projββπΊ) = πΊ) |
3 | pjrn 31215 | . . . . . . 7 β’ (π» β Cβ β ran (projββπ») = π») | |
4 | 3 | fveq2d 6895 | . . . . . 6 β’ (π» β Cβ β (β₯βran (projββπ»)) = (β₯βπ»)) |
5 | 4 | adantl 482 | . . . . 5 β’ ((πΊ β Cβ β§ π» β Cβ ) β (β₯βran (projββπ»)) = (β₯βπ»)) |
6 | 2, 5 | sseq12d 4015 | . . . 4 β’ ((πΊ β Cβ β§ π» β Cβ ) β (ran (projββπΊ) β (β₯βran (projββπ»)) β πΊ β (β₯βπ»))) |
7 | 6 | biimpar 478 | . . 3 β’ (((πΊ β Cβ β§ π» β Cβ ) β§ πΊ β (β₯βπ»)) β ran (projββπΊ) β (β₯βran (projββπ»))) |
8 | 7 | 3adantl3 1168 | . 2 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ πΊ β (β₯βπ»)) β ran (projββπΊ) β (β₯βran (projββπ»))) |
9 | id 22 | . . . . . . 7 β’ (π» β Cβ β π» β Cβ ) | |
10 | 3, 9 | eqeltrd 2833 | . . . . . 6 β’ (π» β Cβ β ran (projββπ») β Cβ ) |
11 | chsh 30732 | . . . . . 6 β’ (ran (projββπ») β Cβ β ran (projββπ») β Sβ ) | |
12 | 10, 11 | syl 17 | . . . . 5 β’ (π» β Cβ β ran (projββπ») β Sβ ) |
13 | 12 | 3ad2ant2 1134 | . . . 4 β’ ((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β ran (projββπ») β Sβ ) |
14 | 13 | adantr 481 | . . 3 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ ran (projββπΊ) β (β₯βran (projββπ»))) β ran (projββπ») β Sβ ) |
15 | simpr 485 | . . 3 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ ran (projββπΊ) β (β₯βran (projββπ»))) β ran (projββπΊ) β (β₯βran (projββπ»))) | |
16 | pjfn 31217 | . . . . . . 7 β’ (πΊ β Cβ β (projββπΊ) Fn β) | |
17 | fnfvelrn 7082 | . . . . . . 7 β’ (((projββπΊ) Fn β β§ π΄ β β) β ((projββπΊ)βπ΄) β ran (projββπΊ)) | |
18 | 16, 17 | sylan 580 | . . . . . 6 β’ ((πΊ β Cβ β§ π΄ β β) β ((projββπΊ)βπ΄) β ran (projββπΊ)) |
19 | 18 | 3adant2 1131 | . . . . 5 β’ ((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β ((projββπΊ)βπ΄) β ran (projββπΊ)) |
20 | pjfn 31217 | . . . . . . 7 β’ (π» β Cβ β (projββπ») Fn β) | |
21 | fnfvelrn 7082 | . . . . . . 7 β’ (((projββπ») Fn β β§ π΄ β β) β ((projββπ»)βπ΄) β ran (projββπ»)) | |
22 | 20, 21 | sylan 580 | . . . . . 6 β’ ((π» β Cβ β§ π΄ β β) β ((projββπ»)βπ΄) β ran (projββπ»)) |
23 | 22 | 3adant1 1130 | . . . . 5 β’ ((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β ((projββπ»)βπ΄) β ran (projββπ»)) |
24 | 19, 23 | jca 512 | . . . 4 β’ ((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β (((projββπΊ)βπ΄) β ran (projββπΊ) β§ ((projββπ»)βπ΄) β ran (projββπ»))) |
25 | 24 | adantr 481 | . . 3 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ ran (projββπΊ) β (β₯βran (projββπ»))) β (((projββπΊ)βπ΄) β ran (projββπΊ) β§ ((projββπ»)βπ΄) β ran (projββπ»))) |
26 | shorth 30803 | . . 3 β’ (ran (projββπ») β Sβ β (ran (projββπΊ) β (β₯βran (projββπ»)) β ((((projββπΊ)βπ΄) β ran (projββπΊ) β§ ((projββπ»)βπ΄) β ran (projββπ»)) β (((projββπΊ)βπ΄) Β·ih ((projββπ»)βπ΄)) = 0))) | |
27 | 14, 15, 25, 26 | syl3c 66 | . 2 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ ran (projββπΊ) β (β₯βran (projββπ»))) β (((projββπΊ)βπ΄) Β·ih ((projββπ»)βπ΄)) = 0) |
28 | 8, 27 | syldan 591 | 1 β’ (((πΊ β Cβ β§ π» β Cβ β§ π΄ β β) β§ πΊ β (β₯βπ»)) β (((projββπΊ)βπ΄) Β·ih ((projββπ»)βπ΄)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 ran crn 5677 Fn wfn 6538 βcfv 6543 (class class class)co 7411 0cc0 11112 βchba 30427 Β·ih csp 30430 Sβ csh 30436 Cβ cch 30437 β₯cort 30438 projβcpjh 30445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 ax-hilex 30507 ax-hfvadd 30508 ax-hvcom 30509 ax-hvass 30510 ax-hv0cl 30511 ax-hvaddid 30512 ax-hfvmul 30513 ax-hvmulid 30514 ax-hvmulass 30515 ax-hvdistr1 30516 ax-hvdistr2 30517 ax-hvmul0 30518 ax-hfi 30587 ax-his1 30590 ax-his2 30591 ax-his3 30592 ax-his4 30593 ax-hcompl 30710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-cn 22951 df-cnp 22952 df-lm 22953 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cfil 24996 df-cau 24997 df-cmet 24998 df-grpo 30001 df-gid 30002 df-ginv 30003 df-gdiv 30004 df-ablo 30053 df-vc 30067 df-nv 30100 df-va 30103 df-ba 30104 df-sm 30105 df-0v 30106 df-vs 30107 df-nmcv 30108 df-ims 30109 df-dip 30209 df-ssp 30230 df-ph 30321 df-cbn 30371 df-hnorm 30476 df-hba 30477 df-hvsub 30479 df-hlim 30480 df-hcau 30481 df-sh 30715 df-ch 30729 df-oc 30760 df-ch0 30761 df-shs 30816 df-pjh 30903 |
This theorem is referenced by: pjoi0i 31226 hstrlem3a 31768 |
Copyright terms: Public domain | W3C validator |