HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlub Structured version   Visualization version   GIF version

Theorem chlub 29203
Description: Hilbert lattice join is the least upper bound of two elements. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chlub ((𝐴C𝐵C𝐶C ) → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 𝐵) ⊆ 𝐶))

Proof of Theorem chlub
StepHypRef Expression
1 chsh 28918 . 2 (𝐴C𝐴S )
2 chsh 28918 . . 3 (𝐵C𝐵S )
3 shlub 29108 . . 3 ((𝐴S𝐵S𝐶C ) → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 𝐵) ⊆ 𝐶))
42, 3syl3an2 1158 . 2 ((𝐴S𝐵C𝐶C ) → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 𝐵) ⊆ 𝐶))
51, 4syl3an1 1157 1 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 𝐵) ⊆ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081  wcel 2107  wss 3940  (class class class)co 7148   S csh 28622   C cch 28623   chj 28627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28693  ax-hfvadd 28694  ax-hvcom 28695  ax-hvass 28696  ax-hv0cl 28697  ax-hvaddid 28698  ax-hfvmul 28699  ax-hvmulid 28700  ax-hvmulass 28701  ax-hvdistr1 28702  ax-hvdistr2 28703  ax-hvmul0 28704  ax-hfi 28773  ax-his1 28776  ax-his2 28777  ax-his3 28778  ax-his4 28779  ax-hcompl 28896
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-cn 21754  df-cnp 21755  df-lm 21756  df-haus 21842  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-xms 22848  df-ms 22849  df-tms 22850  df-cfil 23776  df-cau 23777  df-cmet 23778  df-grpo 28187  df-gid 28188  df-ginv 28189  df-gdiv 28190  df-ablo 28239  df-vc 28253  df-nv 28286  df-va 28289  df-ba 28290  df-sm 28291  df-0v 28292  df-vs 28293  df-nmcv 28294  df-ims 28295  df-dip 28395  df-ssp 28416  df-ph 28507  df-cbn 28557  df-hnorm 28662  df-hba 28663  df-hvsub 28665  df-hlim 28666  df-hcau 28667  df-sh 28901  df-ch 28915  df-oc 28946  df-ch0 28947  df-shs 29002  df-chj 29004
This theorem is referenced by:  chabs1  29210  mdbr2  29990  dmdbr2  29997  mdsl1i  30015  mdsl2i  30016  mdsl2bi  30017  chrelati  30058  chrelat2i  30059  cvexchlem  30062  atexch  30075  atomli  30076  atcvatlem  30079  atcvati  30080  mdsymlem5  30101  dmdbr5ati  30116
  Copyright terms: Public domain W3C validator