HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   GIF version

Theorem chscllem3 31619
Description: Lemma for chscl 31621. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscllem3.7 (𝜑𝑁 ∈ ℕ)
chscllem3.8 (𝜑𝐶𝐴)
chscllem3.9 (𝜑𝐷𝐵)
chscllem3.10 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
Assertion
Ref Expression
chscllem3 (𝜑𝐶 = (𝐹𝑁))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢,𝑛)   𝐷(𝑢,𝑛)   𝐹(𝑢,𝑛)   𝑁(𝑢)

Proof of Theorem chscllem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 2fveq3 6827 . . . . . . 7 (𝑛 = 𝑁 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑁)))
3 chscl.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
4 fvex 6835 . . . . . . 7 ((proj𝐴)‘(𝐻𝑁)) ∈ V
52, 3, 4fvmpt 6929 . . . . . 6 (𝑁 ∈ ℕ → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
61, 5syl 17 . . . . 5 (𝜑 → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
76eqcomd 2737 . . . 4 (𝜑 → ((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁))
8 chscl.1 . . . . 5 (𝜑𝐴C )
9 chscl.2 . . . . . . . . 9 (𝜑𝐵C )
10 chsh 31204 . . . . . . . . 9 (𝐵C𝐵S )
119, 10syl 17 . . . . . . . 8 (𝜑𝐵S )
12 chsh 31204 . . . . . . . . . 10 (𝐴C𝐴S )
138, 12syl 17 . . . . . . . . 9 (𝜑𝐴S )
14 shocsh 31264 . . . . . . . . 9 (𝐴S → (⊥‘𝐴) ∈ S )
1513, 14syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ∈ S )
16 chscl.3 . . . . . . . 8 (𝜑𝐵 ⊆ (⊥‘𝐴))
17 shless 31339 . . . . . . . 8 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
1811, 15, 13, 16, 17syl31anc 1375 . . . . . . 7 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
19 shscom 31299 . . . . . . . 8 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
2013, 11, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21 shscom 31299 . . . . . . . 8 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2213, 15, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2318, 20, 223sstr4d 3985 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
24 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
2524, 1ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐻𝑁) ∈ (𝐴 + 𝐵))
2623, 25sseldd 3930 . . . . 5 (𝜑 → (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴)))
27 pjpreeq 31378 . . . . 5 ((𝐴C ∧ (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
288, 26, 27syl2anc 584 . . . 4 (𝜑 → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
297, 28mpbid 232 . . 3 (𝜑 → ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧)))
3029simprd 495 . 2 (𝜑 → ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))
3113adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐴S )
3215adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (⊥‘𝐴) ∈ S )
33 ocin 31276 . . . . . 6 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
3413, 33syl 17 . . . . 5 (𝜑 → (𝐴 ∩ (⊥‘𝐴)) = 0)
3534adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐴 ∩ (⊥‘𝐴)) = 0)
36 chscllem3.8 . . . . 5 (𝜑𝐶𝐴)
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶𝐴)
3816adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐵 ⊆ (⊥‘𝐴))
39 chscllem3.9 . . . . . 6 (𝜑𝐷𝐵)
4039adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷𝐵)
4138, 40sseldd 3930 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷 ∈ (⊥‘𝐴))
42 chscl.5 . . . . . . 7 (𝜑𝐻𝑣 𝑢)
438, 9, 16, 24, 42, 3chscllem1 31617 . . . . . 6 (𝜑𝐹:ℕ⟶𝐴)
4443, 1ffvelcdmd 7018 . . . . 5 (𝜑 → (𝐹𝑁) ∈ 𝐴)
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐹𝑁) ∈ 𝐴)
46 simprl 770 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝑧 ∈ (⊥‘𝐴))
47 chscllem3.10 . . . . . 6 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
4847adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = (𝐶 + 𝐷))
49 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = ((𝐹𝑁) + 𝑧))
5048, 49eqtr3d 2768 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 + 𝐷) = ((𝐹𝑁) + 𝑧))
5131, 32, 35, 37, 41, 45, 46, 50shuni 31280 . . 3 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 = (𝐹𝑁) ∧ 𝐷 = 𝑧))
5251simpld 494 . 2 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶 = (𝐹𝑁))
5330, 52rexlimddv 3139 1 (𝜑𝐶 = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3896  wss 3897   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cn 12125   + cva 30900  𝑣 chli 30907   S csh 30908   C cch 30909  cort 30910   + cph 30911  0c0h 30915  projcpjh 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-grpo 30473  df-ablo 30525  df-hvsub 30951  df-sh 31187  df-ch 31201  df-oc 31232  df-ch0 31233  df-shs 31288  df-pjh 31375
This theorem is referenced by:  chscllem4  31620
  Copyright terms: Public domain W3C validator