HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   GIF version

Theorem chscllem3 31620
Description: Lemma for chscl 31622. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscllem3.7 (𝜑𝑁 ∈ ℕ)
chscllem3.8 (𝜑𝐶𝐴)
chscllem3.9 (𝜑𝐷𝐵)
chscllem3.10 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
Assertion
Ref Expression
chscllem3 (𝜑𝐶 = (𝐹𝑁))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢,𝑛)   𝐷(𝑢,𝑛)   𝐹(𝑢,𝑛)   𝑁(𝑢)

Proof of Theorem chscllem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 2fveq3 6881 . . . . . . 7 (𝑛 = 𝑁 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑁)))
3 chscl.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
4 fvex 6889 . . . . . . 7 ((proj𝐴)‘(𝐻𝑁)) ∈ V
52, 3, 4fvmpt 6986 . . . . . 6 (𝑁 ∈ ℕ → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
61, 5syl 17 . . . . 5 (𝜑 → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
76eqcomd 2741 . . . 4 (𝜑 → ((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁))
8 chscl.1 . . . . 5 (𝜑𝐴C )
9 chscl.2 . . . . . . . . 9 (𝜑𝐵C )
10 chsh 31205 . . . . . . . . 9 (𝐵C𝐵S )
119, 10syl 17 . . . . . . . 8 (𝜑𝐵S )
12 chsh 31205 . . . . . . . . . 10 (𝐴C𝐴S )
138, 12syl 17 . . . . . . . . 9 (𝜑𝐴S )
14 shocsh 31265 . . . . . . . . 9 (𝐴S → (⊥‘𝐴) ∈ S )
1513, 14syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ∈ S )
16 chscl.3 . . . . . . . 8 (𝜑𝐵 ⊆ (⊥‘𝐴))
17 shless 31340 . . . . . . . 8 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
1811, 15, 13, 16, 17syl31anc 1375 . . . . . . 7 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
19 shscom 31300 . . . . . . . 8 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
2013, 11, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21 shscom 31300 . . . . . . . 8 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2213, 15, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2318, 20, 223sstr4d 4014 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
24 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
2524, 1ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝐻𝑁) ∈ (𝐴 + 𝐵))
2623, 25sseldd 3959 . . . . 5 (𝜑 → (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴)))
27 pjpreeq 31379 . . . . 5 ((𝐴C ∧ (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
288, 26, 27syl2anc 584 . . . 4 (𝜑 → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
297, 28mpbid 232 . . 3 (𝜑 → ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧)))
3029simprd 495 . 2 (𝜑 → ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))
3113adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐴S )
3215adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (⊥‘𝐴) ∈ S )
33 ocin 31277 . . . . . 6 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
3413, 33syl 17 . . . . 5 (𝜑 → (𝐴 ∩ (⊥‘𝐴)) = 0)
3534adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐴 ∩ (⊥‘𝐴)) = 0)
36 chscllem3.8 . . . . 5 (𝜑𝐶𝐴)
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶𝐴)
3816adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐵 ⊆ (⊥‘𝐴))
39 chscllem3.9 . . . . . 6 (𝜑𝐷𝐵)
4039adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷𝐵)
4138, 40sseldd 3959 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷 ∈ (⊥‘𝐴))
42 chscl.5 . . . . . . 7 (𝜑𝐻𝑣 𝑢)
438, 9, 16, 24, 42, 3chscllem1 31618 . . . . . 6 (𝜑𝐹:ℕ⟶𝐴)
4443, 1ffvelcdmd 7075 . . . . 5 (𝜑 → (𝐹𝑁) ∈ 𝐴)
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐹𝑁) ∈ 𝐴)
46 simprl 770 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝑧 ∈ (⊥‘𝐴))
47 chscllem3.10 . . . . . 6 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
4847adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = (𝐶 + 𝐷))
49 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = ((𝐹𝑁) + 𝑧))
5048, 49eqtr3d 2772 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 + 𝐷) = ((𝐹𝑁) + 𝑧))
5131, 32, 35, 37, 41, 45, 46, 50shuni 31281 . . 3 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 = (𝐹𝑁) ∧ 𝐷 = 𝑧))
5251simpld 494 . 2 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶 = (𝐹𝑁))
5330, 52rexlimddv 3147 1 (𝜑𝐶 = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  cin 3925  wss 3926   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cn 12240   + cva 30901  𝑣 chli 30908   S csh 30909   C cch 30910  cort 30911   + cph 30912  0c0h 30916  projcpjh 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-grpo 30474  df-ablo 30526  df-hvsub 30952  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234  df-shs 31289  df-pjh 31376
This theorem is referenced by:  chscllem4  31621
  Copyright terms: Public domain W3C validator