HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   GIF version

Theorem chscllem3 31583
Description: Lemma for chscl 31585. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscllem3.7 (𝜑𝑁 ∈ ℕ)
chscllem3.8 (𝜑𝐶𝐴)
chscllem3.9 (𝜑𝐷𝐵)
chscllem3.10 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
Assertion
Ref Expression
chscllem3 (𝜑𝐶 = (𝐹𝑁))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢,𝑛)   𝐷(𝑢,𝑛)   𝐹(𝑢,𝑛)   𝑁(𝑢)

Proof of Theorem chscllem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 2fveq3 6827 . . . . . . 7 (𝑛 = 𝑁 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑁)))
3 chscl.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
4 fvex 6835 . . . . . . 7 ((proj𝐴)‘(𝐻𝑁)) ∈ V
52, 3, 4fvmpt 6930 . . . . . 6 (𝑁 ∈ ℕ → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
61, 5syl 17 . . . . 5 (𝜑 → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
76eqcomd 2735 . . . 4 (𝜑 → ((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁))
8 chscl.1 . . . . 5 (𝜑𝐴C )
9 chscl.2 . . . . . . . . 9 (𝜑𝐵C )
10 chsh 31168 . . . . . . . . 9 (𝐵C𝐵S )
119, 10syl 17 . . . . . . . 8 (𝜑𝐵S )
12 chsh 31168 . . . . . . . . . 10 (𝐴C𝐴S )
138, 12syl 17 . . . . . . . . 9 (𝜑𝐴S )
14 shocsh 31228 . . . . . . . . 9 (𝐴S → (⊥‘𝐴) ∈ S )
1513, 14syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ∈ S )
16 chscl.3 . . . . . . . 8 (𝜑𝐵 ⊆ (⊥‘𝐴))
17 shless 31303 . . . . . . . 8 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
1811, 15, 13, 16, 17syl31anc 1375 . . . . . . 7 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
19 shscom 31263 . . . . . . . 8 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
2013, 11, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21 shscom 31263 . . . . . . . 8 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2213, 15, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2318, 20, 223sstr4d 3991 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
24 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
2524, 1ffvelcdmd 7019 . . . . . 6 (𝜑 → (𝐻𝑁) ∈ (𝐴 + 𝐵))
2623, 25sseldd 3936 . . . . 5 (𝜑 → (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴)))
27 pjpreeq 31342 . . . . 5 ((𝐴C ∧ (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
288, 26, 27syl2anc 584 . . . 4 (𝜑 → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
297, 28mpbid 232 . . 3 (𝜑 → ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧)))
3029simprd 495 . 2 (𝜑 → ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))
3113adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐴S )
3215adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (⊥‘𝐴) ∈ S )
33 ocin 31240 . . . . . 6 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
3413, 33syl 17 . . . . 5 (𝜑 → (𝐴 ∩ (⊥‘𝐴)) = 0)
3534adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐴 ∩ (⊥‘𝐴)) = 0)
36 chscllem3.8 . . . . 5 (𝜑𝐶𝐴)
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶𝐴)
3816adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐵 ⊆ (⊥‘𝐴))
39 chscllem3.9 . . . . . 6 (𝜑𝐷𝐵)
4039adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷𝐵)
4138, 40sseldd 3936 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷 ∈ (⊥‘𝐴))
42 chscl.5 . . . . . . 7 (𝜑𝐻𝑣 𝑢)
438, 9, 16, 24, 42, 3chscllem1 31581 . . . . . 6 (𝜑𝐹:ℕ⟶𝐴)
4443, 1ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐹𝑁) ∈ 𝐴)
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐹𝑁) ∈ 𝐴)
46 simprl 770 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝑧 ∈ (⊥‘𝐴))
47 chscllem3.10 . . . . . 6 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
4847adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = (𝐶 + 𝐷))
49 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = ((𝐹𝑁) + 𝑧))
5048, 49eqtr3d 2766 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 + 𝐷) = ((𝐹𝑁) + 𝑧))
5131, 32, 35, 37, 41, 45, 46, 50shuni 31244 . . 3 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 = (𝐹𝑁) ∧ 𝐷 = 𝑧))
5251simpld 494 . 2 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶 = (𝐹𝑁))
5330, 52rexlimddv 3136 1 (𝜑𝐶 = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cn 12128   + cva 30864  𝑣 chli 30871   S csh 30872   C cch 30873  cort 30874   + cph 30875  0c0h 30879  projcpjh 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-grpo 30437  df-ablo 30489  df-hvsub 30915  df-sh 31151  df-ch 31165  df-oc 31196  df-ch0 31197  df-shs 31252  df-pjh 31339
This theorem is referenced by:  chscllem4  31584
  Copyright terms: Public domain W3C validator