HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   GIF version

Theorem chscllem3 30930
Description: Lemma for chscl 30932. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscllem3.7 (𝜑𝑁 ∈ ℕ)
chscllem3.8 (𝜑𝐶𝐴)
chscllem3.9 (𝜑𝐷𝐵)
chscllem3.10 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
Assertion
Ref Expression
chscllem3 (𝜑𝐶 = (𝐹𝑁))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢,𝑛)   𝐷(𝑢,𝑛)   𝐹(𝑢,𝑛)   𝑁(𝑢)

Proof of Theorem chscllem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 2fveq3 6896 . . . . . . 7 (𝑛 = 𝑁 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑁)))
3 chscl.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
4 fvex 6904 . . . . . . 7 ((proj𝐴)‘(𝐻𝑁)) ∈ V
52, 3, 4fvmpt 6998 . . . . . 6 (𝑁 ∈ ℕ → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
61, 5syl 17 . . . . 5 (𝜑 → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
76eqcomd 2738 . . . 4 (𝜑 → ((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁))
8 chscl.1 . . . . 5 (𝜑𝐴C )
9 chscl.2 . . . . . . . . 9 (𝜑𝐵C )
10 chsh 30515 . . . . . . . . 9 (𝐵C𝐵S )
119, 10syl 17 . . . . . . . 8 (𝜑𝐵S )
12 chsh 30515 . . . . . . . . . 10 (𝐴C𝐴S )
138, 12syl 17 . . . . . . . . 9 (𝜑𝐴S )
14 shocsh 30575 . . . . . . . . 9 (𝐴S → (⊥‘𝐴) ∈ S )
1513, 14syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ∈ S )
16 chscl.3 . . . . . . . 8 (𝜑𝐵 ⊆ (⊥‘𝐴))
17 shless 30650 . . . . . . . 8 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
1811, 15, 13, 16, 17syl31anc 1373 . . . . . . 7 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
19 shscom 30610 . . . . . . . 8 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
2013, 11, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21 shscom 30610 . . . . . . . 8 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2213, 15, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2318, 20, 223sstr4d 4029 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
24 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
2524, 1ffvelcdmd 7087 . . . . . 6 (𝜑 → (𝐻𝑁) ∈ (𝐴 + 𝐵))
2623, 25sseldd 3983 . . . . 5 (𝜑 → (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴)))
27 pjpreeq 30689 . . . . 5 ((𝐴C ∧ (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
288, 26, 27syl2anc 584 . . . 4 (𝜑 → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
297, 28mpbid 231 . . 3 (𝜑 → ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧)))
3029simprd 496 . 2 (𝜑 → ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))
3113adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐴S )
3215adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (⊥‘𝐴) ∈ S )
33 ocin 30587 . . . . . 6 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
3413, 33syl 17 . . . . 5 (𝜑 → (𝐴 ∩ (⊥‘𝐴)) = 0)
3534adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐴 ∩ (⊥‘𝐴)) = 0)
36 chscllem3.8 . . . . 5 (𝜑𝐶𝐴)
3736adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶𝐴)
3816adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐵 ⊆ (⊥‘𝐴))
39 chscllem3.9 . . . . . 6 (𝜑𝐷𝐵)
4039adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷𝐵)
4138, 40sseldd 3983 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷 ∈ (⊥‘𝐴))
42 chscl.5 . . . . . . 7 (𝜑𝐻𝑣 𝑢)
438, 9, 16, 24, 42, 3chscllem1 30928 . . . . . 6 (𝜑𝐹:ℕ⟶𝐴)
4443, 1ffvelcdmd 7087 . . . . 5 (𝜑 → (𝐹𝑁) ∈ 𝐴)
4544adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐹𝑁) ∈ 𝐴)
46 simprl 769 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝑧 ∈ (⊥‘𝐴))
47 chscllem3.10 . . . . . 6 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
4847adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = (𝐶 + 𝐷))
49 simprr 771 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = ((𝐹𝑁) + 𝑧))
5048, 49eqtr3d 2774 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 + 𝐷) = ((𝐹𝑁) + 𝑧))
5131, 32, 35, 37, 41, 45, 46, 50shuni 30591 . . 3 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 = (𝐹𝑁) ∧ 𝐷 = 𝑧))
5251simpld 495 . 2 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶 = (𝐹𝑁))
5330, 52rexlimddv 3161 1 (𝜑𝐶 = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  cin 3947  wss 3948   class class class wbr 5148  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7411  cn 12214   + cva 30211  𝑣 chli 30218   S csh 30219   C cch 30220  cort 30221   + cph 30222  0c0h 30226  projcpjh 30228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-hilex 30290  ax-hfvadd 30291  ax-hvcom 30292  ax-hvass 30293  ax-hv0cl 30294  ax-hvaddid 30295  ax-hfvmul 30296  ax-hvmulid 30297  ax-hvmulass 30298  ax-hvdistr1 30299  ax-hvdistr2 30300  ax-hvmul0 30301  ax-hfi 30370  ax-his2 30374  ax-his3 30375  ax-his4 30376
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-grpo 29784  df-ablo 29836  df-hvsub 30262  df-sh 30498  df-ch 30512  df-oc 30543  df-ch0 30544  df-shs 30599  df-pjh 30686
This theorem is referenced by:  chscllem4  30931
  Copyright terms: Public domain W3C validator