HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chub1 Structured version   Visualization version   GIF version

Theorem chub1 28971
Description: Hilbert lattice join is greater than or equal to its first argument. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chub1 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))

Proof of Theorem chub1
StepHypRef Expression
1 chsh 28688 . 2 (𝐴C𝐴S )
2 chsh 28688 . 2 (𝐵C𝐵S )
3 shub1 28846 . 2 ((𝐴S𝐵S ) → 𝐴 ⊆ (𝐴 𝐵))
41, 2, 3syl2an 595 1 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2083  wss 3865  (class class class)co 7023   S csh 28392   C cch 28393   chj 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470  ax-hilex 28463  ax-hfvadd 28464  ax-hvcom 28465  ax-hvass 28466  ax-hv0cl 28467  ax-hvaddid 28468  ax-hfvmul 28469  ax-hvmulid 28470  ax-hvmulass 28471  ax-hvdistr1 28472  ax-hvdistr2 28473  ax-hvmul0 28474  ax-hfi 28543  ax-his1 28546  ax-his2 28547  ax-his3 28548  ax-his4 28549  ax-hcompl 28666
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-icc 12599  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cn 21523  df-cnp 21524  df-lm 21525  df-haus 21611  df-tx 21858  df-hmeo 22051  df-xms 22617  df-ms 22618  df-tms 22619  df-cau 23546  df-grpo 27957  df-gid 27958  df-ginv 27959  df-gdiv 27960  df-ablo 28009  df-vc 28023  df-nv 28056  df-va 28059  df-ba 28060  df-sm 28061  df-0v 28062  df-vs 28063  df-nmcv 28064  df-ims 28065  df-dip 28165  df-hnorm 28432  df-hvsub 28435  df-hlim 28436  df-hcau 28437  df-sh 28671  df-ch 28685  df-oc 28716  df-shs 28772  df-chj 28774
This theorem is referenced by:  chub2  28972  chabs1  28980  chabs2  28981  pjoml5  29077  mdbr2  29760  dmdbr5  29772  mdsl0  29774  mdsl2i  29786  atexch  29845  atomli  29846  atcvatlem  29849  atcvat4i  29861  mdsymlem1  29867  mdsymlem2  29868  mdsymlem5  29871
  Copyright terms: Public domain W3C validator