![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choccl | Structured version Visualization version GIF version |
Description: Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choccl | ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 31157 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | shoccl 31238 | . 2 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Cℋ ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6554 Sℋ csh 30861 Cℋ cch 30862 ⊥cort 30863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 ax-hilex 30932 ax-hfvadd 30933 ax-hvcom 30934 ax-hvass 30935 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvmulass 30940 ax-hvdistr1 30941 ax-hvdistr2 30942 ax-hvmul0 30943 ax-hfi 31012 ax-his1 31015 ax-his2 31016 ax-his3 31017 ax-his4 31018 ax-hcompl 31135 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-icc 13385 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-sum 15691 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cn 23222 df-cnp 23223 df-lm 23224 df-haus 23310 df-tx 23557 df-hmeo 23750 df-xms 24317 df-ms 24318 df-tms 24319 df-cau 25275 df-grpo 30426 df-gid 30427 df-ginv 30428 df-gdiv 30429 df-ablo 30478 df-vc 30492 df-nv 30525 df-va 30528 df-ba 30529 df-sm 30530 df-0v 30531 df-vs 30532 df-nmcv 30533 df-ims 30534 df-dip 30634 df-hnorm 30901 df-hvsub 30904 df-hlim 30905 df-hcau 30906 df-sh 31140 df-ch 31154 df-oc 31185 |
This theorem is referenced by: choccli 31240 pjhtheu2 31349 pjpjpre 31352 pjpjhth 31358 pjop 31360 pjpo 31361 pjoccl 31366 chssoc 31429 chsscon1 31434 chpsscon1 31437 chpsscon2 31438 chdmm2 31459 chdmm3 31460 chdmm4 31461 chdmj1 31462 chdmj2 31463 chdmj3 31464 chdmj4 31465 spansnch 31493 pjspansn 31510 cmcm2 31549 fh1 31551 fh2 31552 cm2j 31553 pjorthi 31602 pjo 31604 pjocvec 31630 hstoc 32155 hstnmoc 32156 hstle1 32159 hst1h 32160 hstle 32163 hstoh 32165 cvcon3 32217 dmdmd 32233 mddmd 32234 ssdmd1 32246 ssdmd2 32247 cvdmd 32270 h1da 32282 atom1d 32286 chirredlem1 32323 chirredlem2 32324 dmdsym 32346 |
Copyright terms: Public domain | W3C validator |