![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choccl | Structured version Visualization version GIF version |
Description: Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choccl | ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 28636 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | shoccl 28719 | . 2 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Cℋ ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 ‘cfv 6123 Sℋ csh 28340 Cℋ cch 28341 ⊥cort 28342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 ax-mulf 10332 ax-hilex 28411 ax-hfvadd 28412 ax-hvcom 28413 ax-hvass 28414 ax-hv0cl 28415 ax-hvaddid 28416 ax-hfvmul 28417 ax-hvmulid 28418 ax-hvmulass 28419 ax-hvdistr1 28420 ax-hvdistr2 28421 ax-hvmul0 28422 ax-hfi 28491 ax-his1 28494 ax-his2 28495 ax-his3 28496 ax-his4 28497 ax-hcompl 28614 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-fi 8586 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-z 11705 df-dec 11822 df-uz 11969 df-q 12072 df-rp 12113 df-xneg 12232 df-xadd 12233 df-xmul 12234 df-ioo 12467 df-icc 12470 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-hom 16329 df-cco 16330 df-rest 16436 df-topn 16437 df-0g 16455 df-gsum 16456 df-topgen 16457 df-pt 16458 df-prds 16461 df-xrs 16515 df-qtop 16520 df-imas 16521 df-xps 16523 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-mulg 17895 df-cntz 18100 df-cmn 18548 df-psmet 20098 df-xmet 20099 df-met 20100 df-bl 20101 df-mopn 20102 df-cnfld 20107 df-top 21069 df-topon 21086 df-topsp 21108 df-bases 21121 df-cn 21402 df-cnp 21403 df-lm 21404 df-haus 21490 df-tx 21736 df-hmeo 21929 df-xms 22495 df-ms 22496 df-tms 22497 df-cau 23424 df-grpo 27903 df-gid 27904 df-ginv 27905 df-gdiv 27906 df-ablo 27955 df-vc 27969 df-nv 28002 df-va 28005 df-ba 28006 df-sm 28007 df-0v 28008 df-vs 28009 df-nmcv 28010 df-ims 28011 df-dip 28111 df-hnorm 28380 df-hvsub 28383 df-hlim 28384 df-hcau 28385 df-sh 28619 df-ch 28633 df-oc 28664 |
This theorem is referenced by: choccli 28721 pjhtheu2 28830 pjpjpre 28833 pjpjhth 28839 pjop 28841 pjpo 28842 pjoccl 28847 chssoc 28910 chsscon1 28915 chpsscon1 28918 chpsscon2 28919 chdmm2 28940 chdmm3 28941 chdmm4 28942 chdmj1 28943 chdmj2 28944 chdmj3 28945 chdmj4 28946 spansnch 28974 pjspansn 28991 cmcm2 29030 fh1 29032 fh2 29033 cm2j 29034 pjorthi 29083 pjo 29085 pjocvec 29111 hstoc 29636 hstnmoc 29637 hstle1 29640 hst1h 29641 hstle 29644 hstoh 29646 cvcon3 29698 dmdmd 29714 mddmd 29715 ssdmd1 29727 ssdmd2 29728 cvdmd 29751 h1da 29763 atom1d 29767 chirredlem1 29804 chirredlem2 29805 dmdsym 29827 |
Copyright terms: Public domain | W3C validator |