MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrecl Structured version   Visualization version   GIF version

Theorem climrecl 15556
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
Assertion
Ref Expression
climrecl (𝜑𝐴 ∈ ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climrecl
StepHypRef Expression
1 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climshft2.1 . . . 4 𝑍 = (ℤ𝑀)
32uzsup 13832 . . 3 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
41, 3syl 17 . 2 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5 climrecl.3 . . . 4 (𝜑𝐹𝐴)
6 climrel 15465 . . . . . . 7 Rel ⇝
76brrelex1i 5697 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
85, 7syl 17 . . . . 5 (𝜑𝐹 ∈ V)
9 eqid 2730 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
102, 9climmpt 15544 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
111, 8, 10syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
125, 11mpbid 232 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴)
13 climrecl.4 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413recnd 11209 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514fmpttd 7090 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
162, 1, 15rlimclim 15519 . . 3 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
1712, 16mpbird 257 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴)
184, 17, 13rlimrecl 15553 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  supcsup 9398  cc 11073  cr 11074  +∞cpnf 11212  *cxr 11214   < clt 11215  cz 12536  cuz 12800  cli 15457  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462
This theorem is referenced by:  climle  15613  climsqz  15614  climsqz2  15615  isumrecl  15738  iprodrecl  15975  prmreclem6  16899  mbflimlem  25575  emcllem7  26919  regamcl  26978  relgamcl  26979  rge0scvg  33946  esumpcvgval  34075  climlec3  35728  rrncmslem  37833  cvgdvgrat  44309  radcnvrat  44310  climreeq  45618  climreclf  45669  fnlimfvre  45679  climliminflimsupd  45806  climliminflimsup  45813  climxlim  45831  sge0isum  46432
  Copyright terms: Public domain W3C validator