MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrecl Structured version   Visualization version   GIF version

Theorem climrecl 15585
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
Assertion
Ref Expression
climrecl (𝜑𝐴 ∈ ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climrecl
StepHypRef Expression
1 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climshft2.1 . . . 4 𝑍 = (ℤ𝑀)
32uzsup 13883 . . 3 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
41, 3syl 17 . 2 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5 climrecl.3 . . . 4 (𝜑𝐹𝐴)
6 climrel 15494 . . . . . . 7 Rel ⇝
76brrelex1i 5738 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
85, 7syl 17 . . . . 5 (𝜑𝐹 ∈ V)
9 eqid 2726 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
102, 9climmpt 15573 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
111, 8, 10syl2anc 582 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
125, 11mpbid 231 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴)
13 climrecl.4 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413recnd 11292 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514fmpttd 7129 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
162, 1, 15rlimclim 15548 . . 3 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
1712, 16mpbird 256 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴)
184, 17, 13rlimrecl 15582 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462   class class class wbr 5153  cmpt 5236  cfv 6554  supcsup 9483  cc 11156  cr 11157  +∞cpnf 11295  *cxr 11297   < clt 11298  cz 12610  cuz 12874  cli 15486  𝑟 crli 15487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fl 13812  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491
This theorem is referenced by:  climle  15642  climsqz  15643  climsqz2  15644  isumrecl  15769  iprodrecl  16004  prmreclem6  16923  mbflimlem  25687  emcllem7  27030  regamcl  27089  relgamcl  27090  rge0scvg  33764  esumpcvgval  33911  climlec3  35556  rrncmslem  37533  cvgdvgrat  43987  radcnvrat  43988  climreeq  45234  climreclf  45285  fnlimfvre  45295  climliminflimsupd  45422  climliminflimsup  45429  climxlim  45447  sge0isum  46048
  Copyright terms: Public domain W3C validator