| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrecl | Structured version Visualization version GIF version | ||
| Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| Ref | Expression |
|---|---|
| climrecl | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climshft2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | uzsup 13832 | . . 3 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
| 5 | climrecl.3 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 6 | climrel 15465 | . . . . . . 7 ⊢ Rel ⇝ | |
| 7 | 6 | brrelex1i 5697 | . . . . . 6 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 10 | 2, 9 | climmpt 15544 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 12 | 5, 11 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴) |
| 13 | climrecl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 14 | 13 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 15 | 14 | fmpttd 7090 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)):𝑍⟶ℂ) |
| 16 | 2, 1, 15 | rlimclim 15519 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 17 | 12, 16 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 𝐴) |
| 18 | 4, 17, 13 | rlimrecl 15553 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 supcsup 9398 ℂcc 11073 ℝcr 11074 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ℤcz 12536 ℤ≥cuz 12800 ⇝ cli 15457 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 |
| This theorem is referenced by: climle 15613 climsqz 15614 climsqz2 15615 isumrecl 15738 iprodrecl 15975 prmreclem6 16899 mbflimlem 25575 emcllem7 26919 regamcl 26978 relgamcl 26979 rge0scvg 33946 esumpcvgval 34075 climlec3 35728 rrncmslem 37833 cvgdvgrat 44309 radcnvrat 44310 climreeq 45618 climreclf 45669 fnlimfvre 45679 climliminflimsupd 45806 climliminflimsup 45813 climxlim 45831 sge0isum 46432 |
| Copyright terms: Public domain | W3C validator |