MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Visualization version   GIF version

Theorem abelthlem5 24710
Description: Lemma for abelth 24716. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)

Proof of Theorem abelthlem5
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12133 . . . 4 0 = (ℤ‘0)
2 0zd 11847 . . . 4 (𝜑 → 0 ∈ ℤ)
3 1rp 12247 . . . . 5 1 ∈ ℝ+
43a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
5 eqidd 2798 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚))
6 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
71, 2, 4, 5, 6climi0 14707 . . 3 (𝜑 → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
87adantr 481 . 2 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
9 simprl 767 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0)
10 oveq2 7031 . . . . . 6 (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖))
11 eqid 2797 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))
12 ovex 7055 . . . . . 6 ((abs‘𝑋)↑𝑖) ∈ V
1310, 11, 12fvmpt 6642 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
1413adantl 482 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
15 cnxmet 23068 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 0cn 10486 . . . . . . . 8 0 ∈ ℂ
17 1xr 10553 . . . . . . . 8 1 ∈ ℝ*
18 blssm 22715 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1453 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
20 simplr 765 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
2119, 20sseldi 3893 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ)
2221abscld 14634 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℝ)
23 reexpcl 13300 . . . . 5 (((abs‘𝑋) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2422, 23sylan 580 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2514, 24eqeltrd 2885 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ)
26 fveq2 6545 . . . . . . 7 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
27 oveq2 7031 . . . . . . 7 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
2826, 27oveq12d 7041 . . . . . 6 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
29 eqid 2797 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7055 . . . . . 6 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
3128, 29, 30fvmpt 6642 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
3231adantl 482 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
33 abelth.1 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
3433ffvelrnda 6723 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
351, 2, 34serf 13252 . . . . . . 7 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3635ad2antrr 722 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ)
3736ffvelrnda 6723 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
38 expcl 13301 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
3921, 38sylan 580 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4037, 39mulcld 10514 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
4132, 40eqeltrd 2885 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
4222recnd 10522 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℂ)
43 absidm 14521 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
4421, 43syl 17 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) = (abs‘𝑋))
45 eqid 2797 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
4645cnmetdval 23066 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4721, 16, 46sylancl 586 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4821subid1d 10840 . . . . . . . . 9 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋)
4948fveq2d 6549 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
5047, 49eqtrd 2833 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
51 elbl3 22689 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5215, 17, 51mpanl12 698 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5316, 21, 52sylancr 587 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5420, 53mpbid 233 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) < 1)
5550, 54eqbrtrrd 4992 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1)
5644, 55eqbrtrd 4990 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) < 1)
5742, 56, 14geolim 15063 . . . 4 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))))
58 climrel 14687 . . . . 5 Rel ⇝
5958releldmi 5707 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
6057, 59syl 17 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
61 1red 10495 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈ ℝ)
6236adantr 481 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ)
63 eluznn0 12170 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
649, 63sylan 580 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
6562, 64ffvelrnd 6724 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
6664, 39syldan 591 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (𝑋𝑖) ∈ ℂ)
6765, 66absmuld 14652 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))))
6821adantr 481 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
6968, 64absexpd 14650 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑖)) = ((abs‘𝑋)↑𝑖))
7069oveq2d 7039 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7167, 70eqtrd 2833 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7265abscld 14634 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
73 1red 10495 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
7464, 24syldan 591 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
7566absge0d 14642 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ (abs‘(𝑋𝑖)))
7675, 69breqtrd 4994 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑖))
77 simprr 769 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
78 2fveq3 6550 . . . . . . . . . 10 (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖)))
7978breq1d 4978 . . . . . . . . 9 (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1))
8079rspccva 3560 . . . . . . . 8 ((∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
8177, 80sylan 580 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
82 1re 10494 . . . . . . . 8 1 ∈ ℝ
83 ltle 10582 . . . . . . . 8 (((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8472, 82, 83sylancl 586 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8581, 84mpd 15 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)
8672, 73, 74, 76, 85lemul1ad 11433 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8771, 86eqbrtrd 4990 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8864, 31syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
8988fveq2d 6549 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
9064, 13syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
9190oveq2d 7039 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖)))
9287, 89, 913brtr4d 5000 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)))
931, 9, 25, 41, 60, 61, 92cvgcmpce 15010 . 2 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
948, 93rexlimddv 3256 1 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wral 3107  wrex 3108  {crab 3111  wss 3865   class class class wbr 4968  cmpt 5047  dom cdm 5450  ccom 5454  wf 6228  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  *cxr 10527   < clt 10528  cle 10529  cmin 10723   / cdiv 11151  0cn0 11751  cuz 12097  +crp 12243  seqcseq 13223  cexp 13283  abscabs 14431  cli 14679  Σcsu 14880  ∞Metcxmet 20216  ballcbl 20218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-xadd 12362  df-ico 12598  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226
This theorem is referenced by:  abelthlem6  24711  abelthlem7  24713
  Copyright terms: Public domain W3C validator