MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Visualization version   GIF version

Theorem abelthlem5 26352
Description: Lemma for abelth 26358. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)

Proof of Theorem abelthlem5
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12842 . . . 4 0 = (ℤ‘0)
2 0zd 12548 . . . 4 (𝜑 → 0 ∈ ℤ)
3 1rp 12962 . . . . 5 1 ∈ ℝ+
43a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
5 eqidd 2731 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚))
6 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
71, 2, 4, 5, 6climi0 15485 . . 3 (𝜑 → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
87adantr 480 . 2 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
9 simprl 770 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0)
10 oveq2 7398 . . . . . 6 (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖))
11 eqid 2730 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))
12 ovex 7423 . . . . . 6 ((abs‘𝑋)↑𝑖) ∈ V
1310, 11, 12fvmpt 6971 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
1413adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
15 cnxmet 24667 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 0cn 11173 . . . . . . . 8 0 ∈ ℂ
17 1xr 11240 . . . . . . . 8 1 ∈ ℝ*
18 blssm 24313 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1463 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
20 simplr 768 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
2119, 20sselid 3947 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ)
2221abscld 15412 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℝ)
23 reexpcl 14050 . . . . 5 (((abs‘𝑋) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2422, 23sylan 580 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2514, 24eqeltrd 2829 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ)
26 fveq2 6861 . . . . . . 7 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
27 oveq2 7398 . . . . . . 7 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
2826, 27oveq12d 7408 . . . . . 6 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
29 eqid 2730 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7423 . . . . . 6 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
3128, 29, 30fvmpt 6971 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
3231adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
33 abelth.1 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
3433ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
351, 2, 34serf 14002 . . . . . . 7 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3635ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ)
3736ffvelcdmda 7059 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
38 expcl 14051 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
3921, 38sylan 580 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4037, 39mulcld 11201 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
4132, 40eqeltrd 2829 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
4222recnd 11209 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℂ)
43 absidm 15297 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
4421, 43syl 17 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) = (abs‘𝑋))
45 eqid 2730 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
4645cnmetdval 24665 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4721, 16, 46sylancl 586 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4821subid1d 11529 . . . . . . . . 9 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋)
4948fveq2d 6865 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
5047, 49eqtrd 2765 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
51 elbl3 24287 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5215, 17, 51mpanl12 702 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5316, 21, 52sylancr 587 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5420, 53mpbid 232 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) < 1)
5550, 54eqbrtrrd 5134 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1)
5644, 55eqbrtrd 5132 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) < 1)
5742, 56, 14geolim 15843 . . . 4 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))))
58 climrel 15465 . . . . 5 Rel ⇝
5958releldmi 5915 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
6057, 59syl 17 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
61 1red 11182 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈ ℝ)
6236adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ)
63 eluznn0 12883 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
649, 63sylan 580 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
6562, 64ffvelcdmd 7060 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
6664, 39syldan 591 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (𝑋𝑖) ∈ ℂ)
6765, 66absmuld 15430 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))))
6821adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
6968, 64absexpd 15428 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑖)) = ((abs‘𝑋)↑𝑖))
7069oveq2d 7406 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7167, 70eqtrd 2765 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7265abscld 15412 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
73 1red 11182 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
7464, 24syldan 591 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
7566absge0d 15420 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ (abs‘(𝑋𝑖)))
7675, 69breqtrd 5136 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑖))
77 simprr 772 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
78 2fveq3 6866 . . . . . . . . . 10 (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖)))
7978breq1d 5120 . . . . . . . . 9 (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1))
8079rspccva 3590 . . . . . . . 8 ((∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
8177, 80sylan 580 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
82 1re 11181 . . . . . . . 8 1 ∈ ℝ
83 ltle 11269 . . . . . . . 8 (((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8472, 82, 83sylancl 586 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8581, 84mpd 15 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)
8672, 73, 74, 76, 85lemul1ad 12129 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8771, 86eqbrtrd 5132 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8864, 31syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
8988fveq2d 6865 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
9064, 13syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
9190oveq2d 7406 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖)))
9287, 89, 913brtr4d 5142 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)))
931, 9, 25, 41, 60, 61, 92cvgcmpce 15791 . 2 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
948, 93rexlimddv 3141 1 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917   class class class wbr 5110  cmpt 5191  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  0cn0 12449  cuz 12800  +crp 12958  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659  ∞Metcxmet 21256  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266
This theorem is referenced by:  abelthlem6  26353  abelthlem7  26355
  Copyright terms: Public domain W3C validator