MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Visualization version   GIF version

Theorem abelthlem5 26375
Description: Lemma for abelth 26381. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)

Proof of Theorem abelthlem5
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12778 . . . 4 0 = (ℤ‘0)
2 0zd 12489 . . . 4 (𝜑 → 0 ∈ ℤ)
3 1rp 12898 . . . . 5 1 ∈ ℝ+
43a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
5 eqidd 2734 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚))
6 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
71, 2, 4, 5, 6climi0 15423 . . 3 (𝜑 → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
87adantr 480 . 2 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
9 simprl 770 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0)
10 oveq2 7362 . . . . . 6 (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖))
11 eqid 2733 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))
12 ovex 7387 . . . . . 6 ((abs‘𝑋)↑𝑖) ∈ V
1310, 11, 12fvmpt 6937 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
1413adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
15 cnxmet 24690 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 0cn 11113 . . . . . . . 8 0 ∈ ℂ
17 1xr 11180 . . . . . . . 8 1 ∈ ℝ*
18 blssm 24336 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1463 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
20 simplr 768 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
2119, 20sselid 3928 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ)
2221abscld 15350 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℝ)
23 reexpcl 13989 . . . . 5 (((abs‘𝑋) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2422, 23sylan 580 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2514, 24eqeltrd 2833 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ)
26 fveq2 6830 . . . . . . 7 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
27 oveq2 7362 . . . . . . 7 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
2826, 27oveq12d 7372 . . . . . 6 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
29 eqid 2733 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7387 . . . . . 6 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
3128, 29, 30fvmpt 6937 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
3231adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
33 abelth.1 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
3433ffvelcdmda 7025 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
351, 2, 34serf 13941 . . . . . . 7 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3635ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ)
3736ffvelcdmda 7025 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
38 expcl 13990 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
3921, 38sylan 580 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4037, 39mulcld 11141 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
4132, 40eqeltrd 2833 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
4222recnd 11149 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℂ)
43 absidm 15235 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
4421, 43syl 17 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) = (abs‘𝑋))
45 eqid 2733 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
4645cnmetdval 24688 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4721, 16, 46sylancl 586 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4821subid1d 11470 . . . . . . . . 9 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋)
4948fveq2d 6834 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
5047, 49eqtrd 2768 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
51 elbl3 24310 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5215, 17, 51mpanl12 702 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5316, 21, 52sylancr 587 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5420, 53mpbid 232 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) < 1)
5550, 54eqbrtrrd 5119 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1)
5644, 55eqbrtrd 5117 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) < 1)
5742, 56, 14geolim 15781 . . . 4 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))))
58 climrel 15403 . . . . 5 Rel ⇝
5958releldmi 5894 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
6057, 59syl 17 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
61 1red 11122 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈ ℝ)
6236adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ)
63 eluznn0 12819 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
649, 63sylan 580 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
6562, 64ffvelcdmd 7026 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
6664, 39syldan 591 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (𝑋𝑖) ∈ ℂ)
6765, 66absmuld 15368 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))))
6821adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
6968, 64absexpd 15366 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑖)) = ((abs‘𝑋)↑𝑖))
7069oveq2d 7370 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7167, 70eqtrd 2768 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7265abscld 15350 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
73 1red 11122 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
7464, 24syldan 591 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
7566absge0d 15358 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ (abs‘(𝑋𝑖)))
7675, 69breqtrd 5121 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑖))
77 simprr 772 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
78 2fveq3 6835 . . . . . . . . . 10 (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖)))
7978breq1d 5105 . . . . . . . . 9 (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1))
8079rspccva 3572 . . . . . . . 8 ((∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
8177, 80sylan 580 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
82 1re 11121 . . . . . . . 8 1 ∈ ℝ
83 ltle 11210 . . . . . . . 8 (((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8472, 82, 83sylancl 586 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8581, 84mpd 15 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)
8672, 73, 74, 76, 85lemul1ad 12070 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8771, 86eqbrtrd 5117 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8864, 31syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
8988fveq2d 6834 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
9064, 13syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
9190oveq2d 7370 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖)))
9287, 89, 913brtr4d 5127 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)))
931, 9, 25, 41, 60, 61, 92cvgcmpce 15729 . 2 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
948, 93rexlimddv 3140 1 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  *cxr 11154   < clt 11155  cle 11156  cmin 11353   / cdiv 11783  0cn0 12390  cuz 12740  +crp 12894  seqcseq 13912  cexp 13972  abscabs 15145  cli 15395  Σcsu 15597  ∞Metcxmet 21280  ballcbl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-xadd 13016  df-ico 13255  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290
This theorem is referenced by:  abelthlem6  26376  abelthlem7  26378
  Copyright terms: Public domain W3C validator