MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Visualization version   GIF version

Theorem abelthlem5 25499
Description: Lemma for abelth 25505. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)

Proof of Theorem abelthlem5
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12549 . . . 4 0 = (ℤ‘0)
2 0zd 12261 . . . 4 (𝜑 → 0 ∈ ℤ)
3 1rp 12663 . . . . 5 1 ∈ ℝ+
43a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
5 eqidd 2739 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚))
6 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
71, 2, 4, 5, 6climi0 15149 . . 3 (𝜑 → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
87adantr 480 . 2 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
9 simprl 767 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0)
10 oveq2 7263 . . . . . 6 (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖))
11 eqid 2738 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))
12 ovex 7288 . . . . . 6 ((abs‘𝑋)↑𝑖) ∈ V
1310, 11, 12fvmpt 6857 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
1413adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
15 cnxmet 23842 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 0cn 10898 . . . . . . . 8 0 ∈ ℂ
17 1xr 10965 . . . . . . . 8 1 ∈ ℝ*
18 blssm 23479 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1459 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
20 simplr 765 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
2119, 20sselid 3915 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ)
2221abscld 15076 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℝ)
23 reexpcl 13727 . . . . 5 (((abs‘𝑋) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2422, 23sylan 579 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2514, 24eqeltrd 2839 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ)
26 fveq2 6756 . . . . . . 7 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
27 oveq2 7263 . . . . . . 7 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
2826, 27oveq12d 7273 . . . . . 6 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
29 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7288 . . . . . 6 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
3128, 29, 30fvmpt 6857 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
3231adantl 481 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
33 abelth.1 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
3433ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
351, 2, 34serf 13679 . . . . . . 7 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3635ad2antrr 722 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ)
3736ffvelrnda 6943 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
38 expcl 13728 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
3921, 38sylan 579 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4037, 39mulcld 10926 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
4132, 40eqeltrd 2839 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
4222recnd 10934 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℂ)
43 absidm 14963 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
4421, 43syl 17 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) = (abs‘𝑋))
45 eqid 2738 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
4645cnmetdval 23840 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4721, 16, 46sylancl 585 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4821subid1d 11251 . . . . . . . . 9 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋)
4948fveq2d 6760 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
5047, 49eqtrd 2778 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
51 elbl3 23453 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5215, 17, 51mpanl12 698 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5316, 21, 52sylancr 586 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5420, 53mpbid 231 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) < 1)
5550, 54eqbrtrrd 5094 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1)
5644, 55eqbrtrd 5092 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) < 1)
5742, 56, 14geolim 15510 . . . 4 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))))
58 climrel 15129 . . . . 5 Rel ⇝
5958releldmi 5846 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
6057, 59syl 17 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
61 1red 10907 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈ ℝ)
6236adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ)
63 eluznn0 12586 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
649, 63sylan 579 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
6562, 64ffvelrnd 6944 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
6664, 39syldan 590 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (𝑋𝑖) ∈ ℂ)
6765, 66absmuld 15094 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))))
6821adantr 480 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
6968, 64absexpd 15092 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑖)) = ((abs‘𝑋)↑𝑖))
7069oveq2d 7271 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7167, 70eqtrd 2778 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7265abscld 15076 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
73 1red 10907 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
7464, 24syldan 590 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
7566absge0d 15084 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ (abs‘(𝑋𝑖)))
7675, 69breqtrd 5096 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑖))
77 simprr 769 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
78 2fveq3 6761 . . . . . . . . . 10 (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖)))
7978breq1d 5080 . . . . . . . . 9 (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1))
8079rspccva 3551 . . . . . . . 8 ((∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
8177, 80sylan 579 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
82 1re 10906 . . . . . . . 8 1 ∈ ℝ
83 ltle 10994 . . . . . . . 8 (((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8472, 82, 83sylancl 585 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8581, 84mpd 15 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)
8672, 73, 74, 76, 85lemul1ad 11844 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8771, 86eqbrtrd 5092 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8864, 31syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
8988fveq2d 6760 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
9064, 13syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
9190oveq2d 7271 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖)))
9287, 89, 913brtr4d 5102 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)))
931, 9, 25, 41, 60, 61, 92cvgcmpce 15458 . 2 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
948, 93rexlimddv 3219 1 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  0cn0 12163  cuz 12511  +crp 12659  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325  ∞Metcxmet 20495  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505
This theorem is referenced by:  abelthlem6  25500  abelthlem7  25502
  Copyright terms: Public domain W3C validator