Step | Hyp | Ref
| Expression |
1 | | nn0uz 12860 |
. . . 4
β’
β0 = (β€β₯β0) |
2 | | 0zd 12566 |
. . . 4
β’ (π β 0 β
β€) |
3 | | 1rp 12974 |
. . . . 5
β’ 1 β
β+ |
4 | 3 | a1i 11 |
. . . 4
β’ (π β 1 β
β+) |
5 | | eqidd 2733 |
. . . 4
β’ ((π β§ π β β0) β (seq0( +
, π΄)βπ) = (seq0( + , π΄)βπ)) |
6 | | abelth.7 |
. . . 4
β’ (π β seq0( + , π΄) β 0) |
7 | 1, 2, 4, 5, 6 | climi0 15452 |
. . 3
β’ (π β βπ β β0 βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1) |
8 | 7 | adantr 481 |
. 2
β’ ((π β§ π β (0(ballβ(abs β β
))1)) β βπ
β β0 βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1) |
9 | | simprl 769 |
. . 3
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β π β β0) |
10 | | oveq2 7413 |
. . . . . 6
β’ (π = π β ((absβπ)βπ) = ((absβπ)βπ)) |
11 | | eqid 2732 |
. . . . . 6
β’ (π β β0
β¦ ((absβπ)βπ)) = (π β β0 β¦
((absβπ)βπ)) |
12 | | ovex 7438 |
. . . . . 6
β’
((absβπ)βπ) β V |
13 | 10, 11, 12 | fvmpt 6995 |
. . . . 5
β’ (π β β0
β ((π β
β0 β¦ ((absβπ)βπ))βπ) = ((absβπ)βπ)) |
14 | 13 | adantl 482 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β ((π β β0
β¦ ((absβπ)βπ))βπ) = ((absβπ)βπ)) |
15 | | cnxmet 24280 |
. . . . . . . 8
β’ (abs
β β ) β (βMetββ) |
16 | | 0cn 11202 |
. . . . . . . 8
β’ 0 β
β |
17 | | 1xr 11269 |
. . . . . . . 8
β’ 1 β
β* |
18 | | blssm 23915 |
. . . . . . . 8
β’ (((abs
β β ) β (βMetββ) β§ 0 β β
β§ 1 β β*) β (0(ballβ(abs β β
))1) β β) |
19 | 15, 16, 17, 18 | mp3an 1461 |
. . . . . . 7
β’
(0(ballβ(abs β β ))1) β β |
20 | | simplr 767 |
. . . . . . 7
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β π β (0(ballβ(abs β β
))1)) |
21 | 19, 20 | sselid 3979 |
. . . . . 6
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β π β β) |
22 | 21 | abscld 15379 |
. . . . 5
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (absβπ) β
β) |
23 | | reexpcl 14040 |
. . . . 5
β’
(((absβπ)
β β β§ π
β β0) β ((absβπ)βπ) β β) |
24 | 22, 23 | sylan 580 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β
((absβπ)βπ) β
β) |
25 | 14, 24 | eqeltrd 2833 |
. . 3
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β ((π β β0
β¦ ((absβπ)βπ))βπ) β β) |
26 | | fveq2 6888 |
. . . . . . 7
β’ (π = π β (seq0( + , π΄)βπ) = (seq0( + , π΄)βπ)) |
27 | | oveq2 7413 |
. . . . . . 7
β’ (π = π β (πβπ) = (πβπ)) |
28 | 26, 27 | oveq12d 7423 |
. . . . . 6
β’ (π = π β ((seq0( + , π΄)βπ) Β· (πβπ)) = ((seq0( + , π΄)βπ) Β· (πβπ))) |
29 | | eqid 2732 |
. . . . . 6
β’ (π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ))) = (π β β0 β¦ ((seq0( +
, π΄)βπ) Β· (πβπ))) |
30 | | ovex 7438 |
. . . . . 6
β’ ((seq0( +
, π΄)βπ) Β· (πβπ)) β V |
31 | 28, 29, 30 | fvmpt 6995 |
. . . . 5
β’ (π β β0
β ((π β
β0 β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))βπ) = ((seq0( + , π΄)βπ) Β· (πβπ))) |
32 | 31 | adantl 482 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β ((π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))βπ) = ((seq0( + , π΄)βπ) Β· (πβπ))) |
33 | | abelth.1 |
. . . . . . . . 9
β’ (π β π΄:β0βΆβ) |
34 | 33 | ffvelcdmda 7083 |
. . . . . . . 8
β’ ((π β§ π₯ β β0) β (π΄βπ₯) β β) |
35 | 1, 2, 34 | serf 13992 |
. . . . . . 7
β’ (π β seq0( + , π΄):β0βΆβ) |
36 | 35 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β seq0( + , π΄):β0βΆβ) |
37 | 36 | ffvelcdmda 7083 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β (seq0( +
, π΄)βπ) β
β) |
38 | | expcl 14041 |
. . . . . 6
β’ ((π β β β§ π β β0)
β (πβπ) β
β) |
39 | 21, 38 | sylan 580 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β (πβπ) β β) |
40 | 37, 39 | mulcld 11230 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β ((seq0( +
, π΄)βπ) Β· (πβπ)) β β) |
41 | 32, 40 | eqeltrd 2833 |
. . 3
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β β0) β ((π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))βπ) β β) |
42 | 22 | recnd 11238 |
. . . . 5
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (absβπ) β
β) |
43 | | absidm 15266 |
. . . . . . 7
β’ (π β β β
(absβ(absβπ)) =
(absβπ)) |
44 | 21, 43 | syl 17 |
. . . . . 6
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β
(absβ(absβπ)) =
(absβπ)) |
45 | | eqid 2732 |
. . . . . . . . . 10
β’ (abs
β β ) = (abs β β ) |
46 | 45 | cnmetdval 24278 |
. . . . . . . . 9
β’ ((π β β β§ 0 β
β) β (π(abs
β β )0) = (absβ(π β 0))) |
47 | 21, 16, 46 | sylancl 586 |
. . . . . . . 8
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (π(abs β β )0) = (absβ(π β 0))) |
48 | 21 | subid1d 11556 |
. . . . . . . . 9
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (π β 0) = π) |
49 | 48 | fveq2d 6892 |
. . . . . . . 8
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (absβ(π β 0)) = (absβπ)) |
50 | 47, 49 | eqtrd 2772 |
. . . . . . 7
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (π(abs β β )0) = (absβπ)) |
51 | | elbl3 23889 |
. . . . . . . . . 10
β’ ((((abs
β β ) β (βMetββ) β§ 1 β
β*) β§ (0 β β β§ π β β)) β (π β (0(ballβ(abs β β
))1) β (π(abs β
β )0) < 1)) |
52 | 15, 17, 51 | mpanl12 700 |
. . . . . . . . 9
β’ ((0
β β β§ π
β β) β (π
β (0(ballβ(abs β β ))1) β (π(abs β β )0) <
1)) |
53 | 16, 21, 52 | sylancr 587 |
. . . . . . . 8
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (π β (0(ballβ(abs β β
))1) β (π(abs β
β )0) < 1)) |
54 | 20, 53 | mpbid 231 |
. . . . . . 7
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (π(abs β β )0) <
1) |
55 | 50, 54 | eqbrtrrd 5171 |
. . . . . 6
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β (absβπ) < 1) |
56 | 44, 55 | eqbrtrd 5169 |
. . . . 5
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β
(absβ(absβπ))
< 1) |
57 | 42, 56, 14 | geolim 15812 |
. . . 4
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β seq0( + , (π β β0
β¦ ((absβπ)βπ))) β (1 / (1 β (absβπ)))) |
58 | | climrel 15432 |
. . . . 5
β’ Rel
β |
59 | 58 | releldmi 5945 |
. . . 4
β’ (seq0( +
, (π β
β0 β¦ ((absβπ)βπ))) β (1 / (1 β (absβπ))) β seq0( + , (π β β0
β¦ ((absβπ)βπ))) β dom β ) |
60 | 57, 59 | syl 17 |
. . 3
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β seq0( + , (π β β0
β¦ ((absβπ)βπ))) β dom β ) |
61 | | 1red 11211 |
. . 3
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β 1 β
β) |
62 | 36 | adantr 481 |
. . . . . . . 8
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β seq0( + , π΄):β0βΆβ) |
63 | | eluznn0 12897 |
. . . . . . . . 9
β’ ((π β β0
β§ π β
(β€β₯βπ)) β π β β0) |
64 | 9, 63 | sylan 580 |
. . . . . . . 8
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β π β β0) |
65 | 62, 64 | ffvelcdmd 7084 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (seq0( + , π΄)βπ) β β) |
66 | 64, 39 | syldan 591 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (πβπ) β β) |
67 | 65, 66 | absmuld 15397 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ((seq0( + ,
π΄)βπ) Β· (πβπ))) = ((absβ(seq0( + , π΄)βπ)) Β· (absβ(πβπ)))) |
68 | 21 | adantr 481 |
. . . . . . . 8
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β π β β) |
69 | 68, 64 | absexpd 15395 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ(πβπ)) = ((absβπ)βπ)) |
70 | 69 | oveq2d 7421 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((absβ(seq0( + ,
π΄)βπ)) Β· (absβ(πβπ))) = ((absβ(seq0( + , π΄)βπ)) Β· ((absβπ)βπ))) |
71 | 67, 70 | eqtrd 2772 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ((seq0( + ,
π΄)βπ) Β· (πβπ))) = ((absβ(seq0( + , π΄)βπ)) Β· ((absβπ)βπ))) |
72 | 65 | abscld 15379 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ(seq0( + ,
π΄)βπ)) β β) |
73 | | 1red 11211 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β 1 β
β) |
74 | 64, 24 | syldan 591 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((absβπ)βπ) β β) |
75 | 66 | absge0d 15387 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β 0 β€
(absβ(πβπ))) |
76 | 75, 69 | breqtrd 5173 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β 0 β€
((absβπ)βπ)) |
77 | | simprr 771 |
. . . . . . . 8
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1) |
78 | | 2fveq3 6893 |
. . . . . . . . . 10
β’ (π = π β (absβ(seq0( + , π΄)βπ)) = (absβ(seq0( + , π΄)βπ))) |
79 | 78 | breq1d 5157 |
. . . . . . . . 9
β’ (π = π β ((absβ(seq0( + , π΄)βπ)) < 1 β (absβ(seq0( + , π΄)βπ)) < 1)) |
80 | 79 | rspccva 3611 |
. . . . . . . 8
β’
((βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1 β§ π β (β€β₯βπ)) β (absβ(seq0( + ,
π΄)βπ)) < 1) |
81 | 77, 80 | sylan 580 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ(seq0( + ,
π΄)βπ)) < 1) |
82 | | 1re 11210 |
. . . . . . . 8
β’ 1 β
β |
83 | | ltle 11298 |
. . . . . . . 8
β’
(((absβ(seq0( + , π΄)βπ)) β β β§ 1 β β)
β ((absβ(seq0( + , π΄)βπ)) < 1 β (absβ(seq0( + , π΄)βπ)) β€ 1)) |
84 | 72, 82, 83 | sylancl 586 |
. . . . . . 7
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((absβ(seq0( + ,
π΄)βπ)) < 1 β (absβ(seq0( + , π΄)βπ)) β€ 1)) |
85 | 81, 84 | mpd 15 |
. . . . . 6
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ(seq0( + ,
π΄)βπ)) β€ 1) |
86 | 72, 73, 74, 76, 85 | lemul1ad 12149 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((absβ(seq0( + ,
π΄)βπ)) Β· ((absβπ)βπ)) β€ (1 Β· ((absβπ)βπ))) |
87 | 71, 86 | eqbrtrd 5169 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ((seq0( + ,
π΄)βπ) Β· (πβπ))) β€ (1 Β· ((absβπ)βπ))) |
88 | 64, 31 | syl 17 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((π β β0 β¦ ((seq0( +
, π΄)βπ) Β· (πβπ)))βπ) = ((seq0( + , π΄)βπ) Β· (πβπ))) |
89 | 88 | fveq2d 6892 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ((π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))βπ)) = (absβ((seq0( + , π΄)βπ) Β· (πβπ)))) |
90 | 64, 13 | syl 17 |
. . . . 5
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β ((π β β0 β¦
((absβπ)βπ))βπ) = ((absβπ)βπ)) |
91 | 90 | oveq2d 7421 |
. . . 4
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (1 Β· ((π β β0
β¦ ((absβπ)βπ))βπ)) = (1 Β· ((absβπ)βπ))) |
92 | 87, 89, 91 | 3brtr4d 5179 |
. . 3
β’ ((((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β§ π β (β€β₯βπ)) β (absβ((π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))βπ)) β€ (1 Β· ((π β β0 β¦
((absβπ)βπ))βπ))) |
93 | 1, 9, 25, 41, 60, 61, 92 | cvgcmpce 15760 |
. 2
β’ (((π β§ π β (0(ballβ(abs β β
))1)) β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < 1)) β seq0( + , (π β β0
β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))) β dom β ) |
94 | 8, 93 | rexlimddv 3161 |
1
β’ ((π β§ π β (0(ballβ(abs β β
))1)) β seq0( + , (π
β β0 β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))) β dom β ) |