Step | Hyp | Ref
| Expression |
1 | | nn0uz 12549 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 12261 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
3 | | 1rp 12663 |
. . . . 5
⊢ 1 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ+) |
5 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚)) |
6 | | abelth.7 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
7 | 1, 2, 4, 5, 6 | climi0 15149 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) |
8 | 7 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → ∃𝑗
∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) |
9 | | simprl 767 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0) |
10 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖)) |
11 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛)) |
12 | | ovex 7288 |
. . . . . 6
⊢
((abs‘𝑋)↑𝑖) ∈ V |
13 | 10, 11, 12 | fvmpt 6857 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) |
14 | 13 | adantl 481 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) |
15 | | cnxmet 23842 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
16 | | 0cn 10898 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
17 | | 1xr 10965 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
18 | | blssm 23479 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) |
19 | 15, 16, 17, 18 | mp3an 1459 |
. . . . . . 7
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ |
20 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) |
21 | 19, 20 | sselid 3915 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ) |
22 | 21 | abscld 15076 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈
ℝ) |
23 | | reexpcl 13727 |
. . . . 5
⊢
(((abs‘𝑋)
∈ ℝ ∧ 𝑖
∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ) |
24 | 22, 23 | sylan 579 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) →
((abs‘𝑋)↑𝑖) ∈
ℝ) |
25 | 14, 24 | eqeltrd 2839 |
. . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ) |
26 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖)) |
27 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑋↑𝑘) = (𝑋↑𝑖)) |
28 | 26, 27 | oveq12d 7273 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
29 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘))) |
30 | | ovex 7288 |
. . . . . 6
⊢ ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ V |
31 | 28, 29, 30 | fvmpt 6857 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
32 | 31 | adantl 481 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
33 | | abelth.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
34 | 33 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝐴‘𝑥) ∈ ℂ) |
35 | 1, 2, 34 | serf 13679 |
. . . . . . 7
⊢ (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ) |
36 | 35 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ) |
37 | 36 | ffvelrnda 6943 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑖) ∈
ℂ) |
38 | | expcl 13728 |
. . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑋↑𝑖) ∈
ℂ) |
39 | 21, 38 | sylan 579 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋↑𝑖) ∈ ℂ) |
40 | 37, 39 | mulcld 10926 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ ℂ) |
41 | 32, 40 | eqeltrd 2839 |
. . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) ∈ ℂ) |
42 | 22 | recnd 10934 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈
ℂ) |
43 | | absidm 14963 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) |
44 | 21, 43 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) |
45 | | eqid 2738 |
. . . . . . . . . 10
⊢ (abs
∘ − ) = (abs ∘ − ) |
46 | 45 | cnmetdval 23840 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑋(abs
∘ − )0) = (abs‘(𝑋 − 0))) |
47 | 21, 16, 46 | sylancl 585 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0))) |
48 | 21 | subid1d 11251 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋) |
49 | 48 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋)) |
50 | 47, 49 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋)) |
51 | | elbl3 23453 |
. . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
52 | 15, 17, 51 | mpanl12 698 |
. . . . . . . . 9
⊢ ((0
∈ ℂ ∧ 𝑋
∈ ℂ) → (𝑋
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
53 | 16, 21, 52 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
54 | 20, 53 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) <
1) |
55 | 50, 54 | eqbrtrrd 5094 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1) |
56 | 44, 55 | eqbrtrd 5092 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) →
(abs‘(abs‘𝑋))
< 1) |
57 | 42, 56, 14 | geolim 15510 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋)))) |
58 | | climrel 15129 |
. . . . 5
⊢ Rel
⇝ |
59 | 58 | releldmi 5846 |
. . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ ) |
60 | 57, 59 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ ) |
61 | | 1red 10907 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈
ℝ) |
62 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ) |
63 | | eluznn0 12586 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘𝑗)) → 𝑖 ∈ ℕ0) |
64 | 9, 63 | sylan 579 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 𝑖 ∈ ℕ0) |
65 | 62, 64 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ) |
66 | 64, 39 | syldan 590 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (𝑋↑𝑖) ∈ ℂ) |
67 | 65, 66 | absmuld 15094 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋↑𝑖)))) |
68 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 𝑋 ∈ ℂ) |
69 | 68, 64 | absexpd 15092 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑋↑𝑖)) = ((abs‘𝑋)↑𝑖)) |
70 | 69 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) · (abs‘(𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖))) |
71 | 67, 70 | eqtrd 2778 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖))) |
72 | 65 | abscld 15076 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) ∈ ℝ) |
73 | | 1red 10907 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 1 ∈
ℝ) |
74 | 64, 24 | syldan 590 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ) |
75 | 66 | absge0d 15084 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 0 ≤
(abs‘(𝑋↑𝑖))) |
76 | 75, 69 | breqtrd 5096 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 0 ≤
((abs‘𝑋)↑𝑖)) |
77 | | simprr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) |
78 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖))) |
79 | 78 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)) |
80 | 79 | rspccva 3551 |
. . . . . . . 8
⊢
((∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) < 1) |
81 | 77, 80 | sylan 579 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) < 1) |
82 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
83 | | ltle 10994 |
. . . . . . . 8
⊢
(((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)) |
84 | 72, 82, 83 | sylancl 585 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)) |
85 | 81, 84 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) ≤ 1) |
86 | 72, 73, 74, 76, 85 | lemul1ad 11844 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖))) |
87 | 71, 86 | eqbrtrd 5092 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖))) |
88 | 64, 31 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
89 | 88 | fveq2d 6760 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) |
90 | 64, 13 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) |
91 | 90 | oveq2d 7271 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (1 · ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖))) |
92 | 87, 89, 91 | 3brtr4d 5102 |
. . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛))‘𝑖))) |
93 | 1, 9, 25, 41, 60, 61, 92 | cvgcmpce 15458 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
94 | 8, 93 | rexlimddv 3219 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑘
∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |