| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nn0uz 12921 | . . . 4
⊢
ℕ0 = (ℤ≥‘0) | 
| 2 |  | 0zd 12627 | . . . 4
⊢ (𝜑 → 0 ∈
ℤ) | 
| 3 |  | 1rp 13039 | . . . . 5
⊢ 1 ∈
ℝ+ | 
| 4 | 3 | a1i 11 | . . . 4
⊢ (𝜑 → 1 ∈
ℝ+) | 
| 5 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚)) | 
| 6 |  | abelth.7 | . . . 4
⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) | 
| 7 | 1, 2, 4, 5, 6 | climi0 15549 | . . 3
⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) | 
| 8 | 7 | adantr 480 | . 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → ∃𝑗
∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) | 
| 9 |  | simprl 770 | . . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0) | 
| 10 |  | oveq2 7440 | . . . . . 6
⊢ (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖)) | 
| 11 |  | eqid 2736 | . . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛)) | 
| 12 |  | ovex 7465 | . . . . . 6
⊢
((abs‘𝑋)↑𝑖) ∈ V | 
| 13 | 10, 11, 12 | fvmpt 7015 | . . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) | 
| 14 | 13 | adantl 481 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) | 
| 15 |  | cnxmet 24794 | . . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 16 |  | 0cn 11254 | . . . . . . . 8
⊢ 0 ∈
ℂ | 
| 17 |  | 1xr 11321 | . . . . . . . 8
⊢ 1 ∈
ℝ* | 
| 18 |  | blssm 24429 | . . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) | 
| 19 | 15, 16, 17, 18 | mp3an 1462 | . . . . . . 7
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ | 
| 20 |  | simplr 768 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) | 
| 21 | 19, 20 | sselid 3980 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ) | 
| 22 | 21 | abscld 15476 | . . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈
ℝ) | 
| 23 |  | reexpcl 14120 | . . . . 5
⊢
(((abs‘𝑋)
∈ ℝ ∧ 𝑖
∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ) | 
| 24 | 22, 23 | sylan 580 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) →
((abs‘𝑋)↑𝑖) ∈
ℝ) | 
| 25 | 14, 24 | eqeltrd 2840 | . . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ) | 
| 26 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖)) | 
| 27 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑋↑𝑘) = (𝑋↑𝑖)) | 
| 28 | 26, 27 | oveq12d 7450 | . . . . . 6
⊢ (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) | 
| 29 |  | eqid 2736 | . . . . . 6
⊢ (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘))) | 
| 30 |  | ovex 7465 | . . . . . 6
⊢ ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ V | 
| 31 | 28, 29, 30 | fvmpt 7015 | . . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) | 
| 32 | 31 | adantl 481 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) | 
| 33 |  | abelth.1 | . . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 34 | 33 | ffvelcdmda 7103 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝐴‘𝑥) ∈ ℂ) | 
| 35 | 1, 2, 34 | serf 14072 | . . . . . . 7
⊢ (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ) | 
| 36 | 35 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ) | 
| 37 | 36 | ffvelcdmda 7103 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑖) ∈
ℂ) | 
| 38 |  | expcl 14121 | . . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑋↑𝑖) ∈
ℂ) | 
| 39 | 21, 38 | sylan 580 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋↑𝑖) ∈ ℂ) | 
| 40 | 37, 39 | mulcld 11282 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ ℂ) | 
| 41 | 32, 40 | eqeltrd 2840 | . . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) ∈ ℂ) | 
| 42 | 22 | recnd 11290 | . . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈
ℂ) | 
| 43 |  | absidm 15363 | . . . . . . 7
⊢ (𝑋 ∈ ℂ →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) | 
| 44 | 21, 43 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) | 
| 45 |  | eqid 2736 | . . . . . . . . . 10
⊢ (abs
∘ − ) = (abs ∘ − ) | 
| 46 | 45 | cnmetdval 24792 | . . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑋(abs
∘ − )0) = (abs‘(𝑋 − 0))) | 
| 47 | 21, 16, 46 | sylancl 586 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0))) | 
| 48 | 21 | subid1d 11610 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋) | 
| 49 | 48 | fveq2d 6909 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋)) | 
| 50 | 47, 49 | eqtrd 2776 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋)) | 
| 51 |  | elbl3 24403 | . . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) | 
| 52 | 15, 17, 51 | mpanl12 702 | . . . . . . . . 9
⊢ ((0
∈ ℂ ∧ 𝑋
∈ ℂ) → (𝑋
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) | 
| 53 | 16, 21, 52 | sylancr 587 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) | 
| 54 | 20, 53 | mpbid 232 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) <
1) | 
| 55 | 50, 54 | eqbrtrrd 5166 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1) | 
| 56 | 44, 55 | eqbrtrd 5164 | . . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) →
(abs‘(abs‘𝑋))
< 1) | 
| 57 | 42, 56, 14 | geolim 15907 | . . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋)))) | 
| 58 |  | climrel 15529 | . . . . 5
⊢ Rel
⇝ | 
| 59 | 58 | releldmi 5958 | . . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ ) | 
| 60 | 57, 59 | syl 17 | . . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ ) | 
| 61 |  | 1red 11263 | . . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈
ℝ) | 
| 62 | 36 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ) | 
| 63 |  | eluznn0 12960 | . . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘𝑗)) → 𝑖 ∈ ℕ0) | 
| 64 | 9, 63 | sylan 580 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 𝑖 ∈ ℕ0) | 
| 65 | 62, 64 | ffvelcdmd 7104 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ) | 
| 66 | 64, 39 | syldan 591 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (𝑋↑𝑖) ∈ ℂ) | 
| 67 | 65, 66 | absmuld 15494 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋↑𝑖)))) | 
| 68 | 21 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 𝑋 ∈ ℂ) | 
| 69 | 68, 64 | absexpd 15492 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑋↑𝑖)) = ((abs‘𝑋)↑𝑖)) | 
| 70 | 69 | oveq2d 7448 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) · (abs‘(𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖))) | 
| 71 | 67, 70 | eqtrd 2776 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖))) | 
| 72 | 65 | abscld 15476 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) ∈ ℝ) | 
| 73 |  | 1red 11263 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 1 ∈
ℝ) | 
| 74 | 64, 24 | syldan 591 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ) | 
| 75 | 66 | absge0d 15484 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 0 ≤
(abs‘(𝑋↑𝑖))) | 
| 76 | 75, 69 | breqtrd 5168 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 0 ≤
((abs‘𝑋)↑𝑖)) | 
| 77 |  | simprr 772 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1) | 
| 78 |  | 2fveq3 6910 | . . . . . . . . . 10
⊢ (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖))) | 
| 79 | 78 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)) | 
| 80 | 79 | rspccva 3620 | . . . . . . . 8
⊢
((∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) < 1) | 
| 81 | 77, 80 | sylan 580 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) < 1) | 
| 82 |  | 1re 11262 | . . . . . . . 8
⊢ 1 ∈
ℝ | 
| 83 |  | ltle 11350 | . . . . . . . 8
⊢
(((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)) | 
| 84 | 72, 82, 83 | sylancl 586 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)) | 
| 85 | 81, 84 | mpd 15 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘(seq0( + ,
𝐴)‘𝑖)) ≤ 1) | 
| 86 | 72, 73, 74, 76, 85 | lemul1ad 12208 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘(seq0( + ,
𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖))) | 
| 87 | 71, 86 | eqbrtrd 5164 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((seq0( + ,
𝐴)‘𝑖) · (𝑋↑𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖))) | 
| 88 | 64, 31 | syl 17 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) | 
| 89 | 88 | fveq2d 6909 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) | 
| 90 | 64, 13 | syl 17 | . . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖)) | 
| 91 | 90 | oveq2d 7448 | . . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (1 · ((𝑛 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖))) | 
| 92 | 87, 89, 91 | 3brtr4d 5174 | . . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → (abs‘((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑛))‘𝑖))) | 
| 93 | 1, 9, 25, 41, 60, 61, 92 | cvgcmpce 15855 | . 2
⊢ (((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) ∧ (𝑗 ∈
ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) | 
| 94 | 8, 93 | rexlimddv 3160 | 1
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑘
∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |