MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem4 Structured version   Visualization version   GIF version

Theorem lgamgulmlem4 26949
Description: Lemma for lgamgulm 26952. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem4 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2nn 12266 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
42, 3nnmulcld 12246 . . . . 5 (𝜑 → (2 · 𝑅) ∈ ℕ)
54nnzd 12563 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℤ)
6 eluzle 12813 . . . . . . 7 (𝑛 ∈ (ℤ‘(2 · 𝑅)) → (2 · 𝑅) ≤ 𝑛)
76adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (2 · 𝑅) ≤ 𝑛)
87iftrued 4499 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
9 eluznn 12884 . . . . . . 7 (((2 · 𝑅) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
104, 9sylan 580 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
11 breq2 5114 . . . . . . . 8 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
12 oveq1 7397 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1312oveq2d 7406 . . . . . . . . 9 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
1413oveq2d 7406 . . . . . . . 8 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
15 oveq1 7397 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
16 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
1715, 16oveq12d 7408 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1817fveq2d 6865 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1918oveq2d 7406 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
20 oveq2 7398 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
2120fveq2d 6865 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
2221oveq1d 7405 . . . . . . . . 9 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
2319, 22oveq12d 7408 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
2411, 14, 23ifbieq12d 4520 . . . . . . 7 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
25 lgamgulm.t . . . . . . 7 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
26 ovex 7423 . . . . . . . 8 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
27 ovex 7423 . . . . . . . 8 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
2826, 27ifex 4542 . . . . . . 7 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
2924, 25, 28fvmpt 6971 . . . . . 6 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
3010, 29syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
31 eqid 2730 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2)))) = (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))
3214, 31, 26fvmpt 6971 . . . . . 6 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
3310, 32syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
348, 30, 333eqtr4d 2775 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛))
355, 34seqfeq 13999 . . 3 (𝜑 → seq(2 · 𝑅)( + , 𝑇) = seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))))
36 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
37 1zzd 12571 . . . . . 6 (𝜑 → 1 ∈ ℤ)
383nncnd 12209 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
39 2cnd 12271 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
40 1cnd 11176 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
4138, 40addcld 11200 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
4239, 41mulcld 11201 . . . . . . 7 (𝜑 → (2 · (𝑅 + 1)) ∈ ℂ)
4338, 42mulcld 11201 . . . . . 6 (𝜑 → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
44 1lt2 12359 . . . . . . . . . 10 1 < 2
45 2re 12267 . . . . . . . . . . 11 2 ∈ ℝ
46 rere 15095 . . . . . . . . . . 11 (2 ∈ ℝ → (ℜ‘2) = 2)
4745, 46ax-mp 5 . . . . . . . . . 10 (ℜ‘2) = 2
4844, 47breqtrri 5137 . . . . . . . . 9 1 < (ℜ‘2)
4948a1i 11 . . . . . . . 8 (𝜑 → 1 < (ℜ‘2))
50 oveq1 7397 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚𝑐-2) = (𝑛𝑐-2))
51 eqid 2730 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)) = (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))
52 ovex 7423 . . . . . . . . . 10 (𝑛𝑐-2) ∈ V
5350, 51, 52fvmpt 6971 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5453adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5539, 49, 54zetacvg 26932 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ )
56 climdm 15527 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
5755, 56sylib 218 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
58 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5958nncnd 12209 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
60 2cnd 12271 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
6160negcld 11527 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -2 ∈ ℂ)
6259, 61cxpcld 26624 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) ∈ ℂ)
6354, 62eqeltrd 2829 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) ∈ ℂ)
6438adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℂ)
65 1cnd 11176 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
6664, 65addcld 11200 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℂ)
6760, 66mulcld 11201 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℂ)
6864, 67mulcld 11201 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
6959sqcld 14116 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℂ)
7058nnne0d 12243 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
71 2z 12572 . . . . . . . . . . 11 2 ∈ ℤ
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
7359, 70, 72expne0d 14124 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ≠ 0)
7468, 69, 73divrecd 11968 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))))
7564, 67, 69, 73divassd 12000 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
7659, 70, 60cxpnegd 26631 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) = (1 / (𝑛𝑐2)))
7759, 70, 72cxpexpzd 26627 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐2) = (𝑛↑2))
7877oveq2d 7406 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛𝑐2)) = (1 / (𝑛↑2)))
7976, 78eqtr2d 2766 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛↑2)) = (𝑛𝑐-2))
8079oveq2d 7406 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8174, 75, 803eqtr3d 2773 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8232adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
8354oveq2d 7406 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8481, 82, 833eqtr4d 2775 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)))
8536, 37, 43, 57, 63, 84isermulc2 15631 . . . . 5 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))))
86 climrel 15465 . . . . . 6 Rel ⇝
8786releldmi 5915 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))) → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8885, 87syl 17 . . . 4 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8967, 69, 73divcld 11965 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℂ)
9064, 89mulcld 11201 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℂ)
9182, 90eqeltrd 2829 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) ∈ ℂ)
9236, 4, 91iserex 15630 . . . 4 (𝜑 → (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ))
9388, 92mpbid 232 . . 3 (𝜑 → seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
9435, 93eqeltrd 2829 . 2 (𝜑 → seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ )
9529adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
963adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℕ)
9796nnred 12208 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℝ)
9845a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
99 1red 11182 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℝ)
10097, 99readdcld 11210 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
10198, 100remulcld 11211 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
10258nnsqcld 14216 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℕ)
103101, 102nndivred 12247 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℝ)
10497, 103remulcld 11211 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℝ)
10558peano2nnd 12210 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
106105nnrpd 13000 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
10758nnrpd 13000 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
108106, 107rpdivcld 13019 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
109108relogcld 26539 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
11097, 109remulcld 11211 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
11196peano2nnd 12210 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
112111nnrpd 13000 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
113112, 107rpmulcld 13018 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
114113relogcld 26539 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
115 pire 26373 . . . . . . . . 9 π ∈ ℝ
116115a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
117114, 116readdcld 11210 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
118110, 117readdcld 11210 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
119104, 118ifcld 4538 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ ℝ)
12095, 119eqeltrd 2829 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
121120recnd 11209 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
12236, 4, 121iserex 15630 . 2 (𝜑 → (seq1( + , 𝑇) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ ))
12394, 122mpbird 257 1 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  seqcseq 13973  cexp 14033  cre 15070  abscabs 15207  cli 15457  πcpi 16039  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by:  lgamgulmlem6  26951
  Copyright terms: Public domain W3C validator