MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem4 Structured version   Visualization version   GIF version

Theorem lgamgulmlem4 27075
Description: Lemma for lgamgulm 27078. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem4 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2nn 12339 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
42, 3nnmulcld 12319 . . . . 5 (𝜑 → (2 · 𝑅) ∈ ℕ)
54nnzd 12640 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℤ)
6 eluzle 12891 . . . . . . 7 (𝑛 ∈ (ℤ‘(2 · 𝑅)) → (2 · 𝑅) ≤ 𝑛)
76adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (2 · 𝑅) ≤ 𝑛)
87iftrued 4533 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
9 eluznn 12960 . . . . . . 7 (((2 · 𝑅) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
104, 9sylan 580 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
11 breq2 5147 . . . . . . . 8 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
12 oveq1 7438 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1312oveq2d 7447 . . . . . . . . 9 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
1413oveq2d 7447 . . . . . . . 8 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
15 oveq1 7438 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
16 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
1715, 16oveq12d 7449 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1817fveq2d 6910 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1918oveq2d 7447 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
20 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
2120fveq2d 6910 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
2221oveq1d 7446 . . . . . . . . 9 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
2319, 22oveq12d 7449 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
2411, 14, 23ifbieq12d 4554 . . . . . . 7 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
25 lgamgulm.t . . . . . . 7 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
26 ovex 7464 . . . . . . . 8 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
27 ovex 7464 . . . . . . . 8 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
2826, 27ifex 4576 . . . . . . 7 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
2924, 25, 28fvmpt 7016 . . . . . 6 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
3010, 29syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
31 eqid 2737 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2)))) = (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))
3214, 31, 26fvmpt 7016 . . . . . 6 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
3310, 32syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
348, 30, 333eqtr4d 2787 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛))
355, 34seqfeq 14068 . . 3 (𝜑 → seq(2 · 𝑅)( + , 𝑇) = seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))))
36 nnuz 12921 . . . . . 6 ℕ = (ℤ‘1)
37 1zzd 12648 . . . . . 6 (𝜑 → 1 ∈ ℤ)
383nncnd 12282 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
39 2cnd 12344 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
40 1cnd 11256 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
4138, 40addcld 11280 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
4239, 41mulcld 11281 . . . . . . 7 (𝜑 → (2 · (𝑅 + 1)) ∈ ℂ)
4338, 42mulcld 11281 . . . . . 6 (𝜑 → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
44 1lt2 12437 . . . . . . . . . 10 1 < 2
45 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
46 rere 15161 . . . . . . . . . . 11 (2 ∈ ℝ → (ℜ‘2) = 2)
4745, 46ax-mp 5 . . . . . . . . . 10 (ℜ‘2) = 2
4844, 47breqtrri 5170 . . . . . . . . 9 1 < (ℜ‘2)
4948a1i 11 . . . . . . . 8 (𝜑 → 1 < (ℜ‘2))
50 oveq1 7438 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚𝑐-2) = (𝑛𝑐-2))
51 eqid 2737 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)) = (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))
52 ovex 7464 . . . . . . . . . 10 (𝑛𝑐-2) ∈ V
5350, 51, 52fvmpt 7016 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5453adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5539, 49, 54zetacvg 27058 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ )
56 climdm 15590 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
5755, 56sylib 218 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
58 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5958nncnd 12282 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
60 2cnd 12344 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
6160negcld 11607 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -2 ∈ ℂ)
6259, 61cxpcld 26750 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) ∈ ℂ)
6354, 62eqeltrd 2841 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) ∈ ℂ)
6438adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℂ)
65 1cnd 11256 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
6664, 65addcld 11280 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℂ)
6760, 66mulcld 11281 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℂ)
6864, 67mulcld 11281 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
6959sqcld 14184 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℂ)
7058nnne0d 12316 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
71 2z 12649 . . . . . . . . . . 11 2 ∈ ℤ
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
7359, 70, 72expne0d 14192 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ≠ 0)
7468, 69, 73divrecd 12046 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))))
7564, 67, 69, 73divassd 12078 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
7659, 70, 60cxpnegd 26757 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) = (1 / (𝑛𝑐2)))
7759, 70, 72cxpexpzd 26753 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐2) = (𝑛↑2))
7877oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛𝑐2)) = (1 / (𝑛↑2)))
7976, 78eqtr2d 2778 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛↑2)) = (𝑛𝑐-2))
8079oveq2d 7447 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8174, 75, 803eqtr3d 2785 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8232adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
8354oveq2d 7447 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8481, 82, 833eqtr4d 2787 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)))
8536, 37, 43, 57, 63, 84isermulc2 15694 . . . . 5 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))))
86 climrel 15528 . . . . . 6 Rel ⇝
8786releldmi 5959 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))) → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8885, 87syl 17 . . . 4 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8967, 69, 73divcld 12043 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℂ)
9064, 89mulcld 11281 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℂ)
9182, 90eqeltrd 2841 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) ∈ ℂ)
9236, 4, 91iserex 15693 . . . 4 (𝜑 → (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ))
9388, 92mpbid 232 . . 3 (𝜑 → seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
9435, 93eqeltrd 2841 . 2 (𝜑 → seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ )
9529adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
963adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℕ)
9796nnred 12281 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℝ)
9845a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
99 1red 11262 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℝ)
10097, 99readdcld 11290 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
10198, 100remulcld 11291 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
10258nnsqcld 14283 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℕ)
103101, 102nndivred 12320 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℝ)
10497, 103remulcld 11291 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℝ)
10558peano2nnd 12283 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
106105nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
10758nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
108106, 107rpdivcld 13094 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
109108relogcld 26665 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
11097, 109remulcld 11291 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
11196peano2nnd 12283 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
112111nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
113112, 107rpmulcld 13093 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
114113relogcld 26665 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
115 pire 26500 . . . . . . . . 9 π ∈ ℝ
116115a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
117114, 116readdcld 11290 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
118110, 117readdcld 11290 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
119104, 118ifcld 4572 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ ℝ)
12095, 119eqeltrd 2841 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
121120recnd 11289 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
12236, 4, 121iserex 15693 . 2 (𝜑 → (seq1( + , 𝑇) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ ))
12394, 122mpbird 257 1 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  seqcseq 14042  cexp 14102  cre 15136  abscabs 15273  cli 15520  πcpi 16102  logclog 26596  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  lgamgulmlem6  27077
  Copyright terms: Public domain W3C validator