Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem4 Structured version   Visualization version   GIF version

Theorem lgamgulmlem4 25601
 Description: Lemma for lgamgulm 25604. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem4 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2nn 11702 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
42, 3nnmulcld 11682 . . . . 5 (𝜑 → (2 · 𝑅) ∈ ℕ)
54nnzd 12078 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℤ)
6 eluzle 12248 . . . . . . 7 (𝑛 ∈ (ℤ‘(2 · 𝑅)) → (2 · 𝑅) ≤ 𝑛)
76adantl 484 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (2 · 𝑅) ≤ 𝑛)
87iftrued 4473 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
9 eluznn 12310 . . . . . . 7 (((2 · 𝑅) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
104, 9sylan 582 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
11 breq2 5061 . . . . . . . 8 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
12 oveq1 7155 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1312oveq2d 7164 . . . . . . . . 9 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
1413oveq2d 7164 . . . . . . . 8 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
15 oveq1 7155 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
16 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
1715, 16oveq12d 7166 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1817fveq2d 6667 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1918oveq2d 7164 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
20 oveq2 7156 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
2120fveq2d 6667 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
2221oveq1d 7163 . . . . . . . . 9 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
2319, 22oveq12d 7166 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
2411, 14, 23ifbieq12d 4492 . . . . . . 7 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
25 lgamgulm.t . . . . . . 7 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
26 ovex 7181 . . . . . . . 8 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
27 ovex 7181 . . . . . . . 8 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
2826, 27ifex 4513 . . . . . . 7 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
2924, 25, 28fvmpt 6761 . . . . . 6 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
3010, 29syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
31 eqid 2819 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2)))) = (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))
3214, 31, 26fvmpt 6761 . . . . . 6 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
3310, 32syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
348, 30, 333eqtr4d 2864 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛))
355, 34seqfeq 13387 . . 3 (𝜑 → seq(2 · 𝑅)( + , 𝑇) = seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))))
36 nnuz 12273 . . . . . 6 ℕ = (ℤ‘1)
37 1zzd 12005 . . . . . 6 (𝜑 → 1 ∈ ℤ)
383nncnd 11646 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
39 2cnd 11707 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
40 1cnd 10628 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
4138, 40addcld 10652 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
4239, 41mulcld 10653 . . . . . . 7 (𝜑 → (2 · (𝑅 + 1)) ∈ ℂ)
4338, 42mulcld 10653 . . . . . 6 (𝜑 → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
44 1lt2 11800 . . . . . . . . . 10 1 < 2
45 2re 11703 . . . . . . . . . . 11 2 ∈ ℝ
46 rere 14473 . . . . . . . . . . 11 (2 ∈ ℝ → (ℜ‘2) = 2)
4745, 46ax-mp 5 . . . . . . . . . 10 (ℜ‘2) = 2
4844, 47breqtrri 5084 . . . . . . . . 9 1 < (ℜ‘2)
4948a1i 11 . . . . . . . 8 (𝜑 → 1 < (ℜ‘2))
50 oveq1 7155 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚𝑐-2) = (𝑛𝑐-2))
51 eqid 2819 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)) = (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))
52 ovex 7181 . . . . . . . . . 10 (𝑛𝑐-2) ∈ V
5350, 51, 52fvmpt 6761 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5453adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5539, 49, 54zetacvg 25584 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ )
56 climdm 14903 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
5755, 56sylib 220 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
58 simpr 487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5958nncnd 11646 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
60 2cnd 11707 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
6160negcld 10976 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -2 ∈ ℂ)
6259, 61cxpcld 25283 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) ∈ ℂ)
6354, 62eqeltrd 2911 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) ∈ ℂ)
6438adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℂ)
65 1cnd 10628 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
6664, 65addcld 10652 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℂ)
6760, 66mulcld 10653 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℂ)
6864, 67mulcld 10653 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
6959sqcld 13500 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℂ)
7058nnne0d 11679 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
71 2z 12006 . . . . . . . . . . 11 2 ∈ ℤ
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
7359, 70, 72expne0d 13508 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ≠ 0)
7468, 69, 73divrecd 11411 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))))
7564, 67, 69, 73divassd 11443 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
7659, 70, 60cxpnegd 25290 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) = (1 / (𝑛𝑐2)))
7759, 70, 72cxpexpzd 25286 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐2) = (𝑛↑2))
7877oveq2d 7164 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛𝑐2)) = (1 / (𝑛↑2)))
7976, 78eqtr2d 2855 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛↑2)) = (𝑛𝑐-2))
8079oveq2d 7164 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8174, 75, 803eqtr3d 2862 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8232adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
8354oveq2d 7164 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8481, 82, 833eqtr4d 2864 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)))
8536, 37, 43, 57, 63, 84isermulc2 15006 . . . . 5 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))))
86 climrel 14841 . . . . . 6 Rel ⇝
8786releldmi 5811 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))) → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8885, 87syl 17 . . . 4 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8967, 69, 73divcld 11408 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℂ)
9064, 89mulcld 10653 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℂ)
9182, 90eqeltrd 2911 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) ∈ ℂ)
9236, 4, 91iserex 15005 . . . 4 (𝜑 → (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ))
9388, 92mpbid 234 . . 3 (𝜑 → seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
9435, 93eqeltrd 2911 . 2 (𝜑 → seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ )
9529adantl 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
963adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℕ)
9796nnred 11645 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℝ)
9845a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
99 1red 10634 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℝ)
10097, 99readdcld 10662 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
10198, 100remulcld 10663 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
10258nnsqcld 13597 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℕ)
103101, 102nndivred 11683 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℝ)
10497, 103remulcld 10663 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℝ)
10558peano2nnd 11647 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
106105nnrpd 12421 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
10758nnrpd 12421 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
108106, 107rpdivcld 12440 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
109108relogcld 25198 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
11097, 109remulcld 10663 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
11196peano2nnd 11647 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
112111nnrpd 12421 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
113112, 107rpmulcld 12439 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
114113relogcld 25198 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
115 pire 25036 . . . . . . . . 9 π ∈ ℝ
116115a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
117114, 116readdcld 10662 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
118110, 117readdcld 10662 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
119104, 118ifcld 4510 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ ℝ)
12095, 119eqeltrd 2911 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
121120recnd 10661 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
12236, 4, 121iserex 15005 . 2 (𝜑 → (seq1( + , 𝑇) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ ))
12394, 122mpbird 259 1 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108  ∀wral 3136  {crab 3140  ifcif 4465   class class class wbr 5057   ↦ cmpt 5137  dom cdm 5548  ‘cfv 6348  (class class class)co 7148  ℂcc 10527  ℝcr 10528  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667   ≤ cle 10668   − cmin 10862  -cneg 10863   / cdiv 11289  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  seqcseq 13361  ↑cexp 13421  ℜcre 14448  abscabs 14585   ⇝ cli 14833  πcpi 15412  logclog 25130  ↑𝑐ccxp 25131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-cxp 25133 This theorem is referenced by:  lgamgulmlem6  25603
 Copyright terms: Public domain W3C validator