MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem4 Structured version   Visualization version   GIF version

Theorem lgamgulmlem4 25049
Description: Lemma for lgamgulm 25052. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem4 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2nn 11345 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
42, 3nnmulcld 11325 . . . . 5 (𝜑 → (2 · 𝑅) ∈ ℕ)
54nnzd 11728 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℤ)
6 eluzle 11899 . . . . . . 7 (𝑛 ∈ (ℤ‘(2 · 𝑅)) → (2 · 𝑅) ≤ 𝑛)
76adantl 473 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (2 · 𝑅) ≤ 𝑛)
87iftrued 4251 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
9 eluznn 11959 . . . . . . 7 (((2 · 𝑅) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
104, 9sylan 575 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
11 breq2 4813 . . . . . . . 8 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
12 oveq1 6849 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1312oveq2d 6858 . . . . . . . . 9 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
1413oveq2d 6858 . . . . . . . 8 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
15 oveq1 6849 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
16 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
1715, 16oveq12d 6860 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1817fveq2d 6379 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1918oveq2d 6858 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
20 oveq2 6850 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
2120fveq2d 6379 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
2221oveq1d 6857 . . . . . . . . 9 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
2319, 22oveq12d 6860 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
2411, 14, 23ifbieq12d 4270 . . . . . . 7 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
25 lgamgulm.t . . . . . . 7 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
26 ovex 6874 . . . . . . . 8 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
27 ovex 6874 . . . . . . . 8 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
2826, 27ifex 4291 . . . . . . 7 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
2924, 25, 28fvmpt 6471 . . . . . 6 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
3010, 29syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
31 eqid 2765 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2)))) = (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))
3214, 31, 26fvmpt 6471 . . . . . 6 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
3310, 32syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
348, 30, 333eqtr4d 2809 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛))
355, 34seqfeq 13033 . . 3 (𝜑 → seq(2 · 𝑅)( + , 𝑇) = seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))))
36 nnuz 11923 . . . . . 6 ℕ = (ℤ‘1)
37 1zzd 11655 . . . . . 6 (𝜑 → 1 ∈ ℤ)
383nncnd 11292 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
39 2cnd 11350 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
40 1cnd 10288 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
4138, 40addcld 10313 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
4239, 41mulcld 10314 . . . . . . 7 (𝜑 → (2 · (𝑅 + 1)) ∈ ℂ)
4338, 42mulcld 10314 . . . . . 6 (𝜑 → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
44 1lt2 11449 . . . . . . . . . 10 1 < 2
45 2re 11346 . . . . . . . . . . 11 2 ∈ ℝ
46 rere 14149 . . . . . . . . . . 11 (2 ∈ ℝ → (ℜ‘2) = 2)
4745, 46ax-mp 5 . . . . . . . . . 10 (ℜ‘2) = 2
4844, 47breqtrri 4836 . . . . . . . . 9 1 < (ℜ‘2)
4948a1i 11 . . . . . . . 8 (𝜑 → 1 < (ℜ‘2))
50 oveq1 6849 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚𝑐-2) = (𝑛𝑐-2))
51 eqid 2765 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)) = (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))
52 ovex 6874 . . . . . . . . . 10 (𝑛𝑐-2) ∈ V
5350, 51, 52fvmpt 6471 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5453adantl 473 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5539, 49, 54zetacvg 25032 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ )
56 climdm 14572 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
5755, 56sylib 209 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
58 simpr 477 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5958nncnd 11292 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
60 2cnd 11350 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
6160negcld 10633 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -2 ∈ ℂ)
6259, 61cxpcld 24745 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) ∈ ℂ)
6354, 62eqeltrd 2844 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) ∈ ℂ)
6438adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℂ)
65 1cnd 10288 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
6664, 65addcld 10313 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℂ)
6760, 66mulcld 10314 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℂ)
6864, 67mulcld 10314 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
6959sqcld 13213 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℂ)
7058nnne0d 11322 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
71 2z 11656 . . . . . . . . . . 11 2 ∈ ℤ
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
7359, 70, 72expne0d 13221 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ≠ 0)
7468, 69, 73divrecd 11058 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))))
7564, 67, 69, 73divassd 11090 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
7659, 70, 60cxpnegd 24752 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) = (1 / (𝑛𝑐2)))
7759, 70, 72cxpexpzd 24748 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐2) = (𝑛↑2))
7877oveq2d 6858 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛𝑐2)) = (1 / (𝑛↑2)))
7976, 78eqtr2d 2800 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛↑2)) = (𝑛𝑐-2))
8079oveq2d 6858 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8174, 75, 803eqtr3d 2807 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8232adantl 473 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
8354oveq2d 6858 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8481, 82, 833eqtr4d 2809 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)))
8536, 37, 43, 57, 63, 84isermulc2 14675 . . . . 5 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))))
86 climrel 14510 . . . . . 6 Rel ⇝
8786releldmi 5531 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))) → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8885, 87syl 17 . . . 4 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8967, 69, 73divcld 11055 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℂ)
9064, 89mulcld 10314 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℂ)
9182, 90eqeltrd 2844 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) ∈ ℂ)
9236, 4, 91iserex 14674 . . . 4 (𝜑 → (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ))
9388, 92mpbid 223 . . 3 (𝜑 → seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
9435, 93eqeltrd 2844 . 2 (𝜑 → seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ )
9529adantl 473 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
963adantr 472 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℕ)
9796nnred 11291 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℝ)
9845a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
99 1red 10294 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℝ)
10097, 99readdcld 10323 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
10198, 100remulcld 10324 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
10258nnsqcld 13236 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℕ)
103101, 102nndivred 11326 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℝ)
10497, 103remulcld 10324 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℝ)
10558peano2nnd 11293 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
106105nnrpd 12068 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
10758nnrpd 12068 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
108106, 107rpdivcld 12087 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
109108relogcld 24660 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
11097, 109remulcld 10324 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
11196peano2nnd 11293 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
112111nnrpd 12068 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
113112, 107rpmulcld 12086 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
114113relogcld 24660 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
115 pire 24502 . . . . . . . . 9 π ∈ ℝ
116115a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
117114, 116readdcld 10323 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
118110, 117readdcld 10323 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
119104, 118ifcld 4288 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ ℝ)
12095, 119eqeltrd 2844 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
121120recnd 10322 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
12236, 4, 121iserex 14674 . 2 (𝜑 → (seq1( + , 𝑇) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ ))
12394, 122mpbird 248 1 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  ifcif 4243   class class class wbr 4809  cmpt 4888  dom cdm 5277  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cz 11624  cuz 11886  seqcseq 13008  cexp 13067  cre 14124  abscabs 14261  cli 14502  πcpi 15081  logclog 24592  𝑐ccxp 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-cxp 24595
This theorem is referenced by:  lgamgulmlem6  25051
  Copyright terms: Public domain W3C validator