MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem4 Structured version   Visualization version   GIF version

Theorem lgamgulmlem4 26418
Description: Lemma for lgamgulm 26421. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem4 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2nn 12235 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
42, 3nnmulcld 12215 . . . . 5 (𝜑 → (2 · 𝑅) ∈ ℕ)
54nnzd 12535 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℤ)
6 eluzle 12785 . . . . . . 7 (𝑛 ∈ (ℤ‘(2 · 𝑅)) → (2 · 𝑅) ≤ 𝑛)
76adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (2 · 𝑅) ≤ 𝑛)
87iftrued 4499 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
9 eluznn 12852 . . . . . . 7 (((2 · 𝑅) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
104, 9sylan 580 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → 𝑛 ∈ ℕ)
11 breq2 5114 . . . . . . . 8 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
12 oveq1 7369 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1312oveq2d 7378 . . . . . . . . 9 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
1413oveq2d 7378 . . . . . . . 8 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
15 oveq1 7369 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
16 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
1715, 16oveq12d 7380 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1817fveq2d 6851 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1918oveq2d 7378 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
20 oveq2 7370 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
2120fveq2d 6851 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
2221oveq1d 7377 . . . . . . . . 9 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
2319, 22oveq12d 7380 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
2411, 14, 23ifbieq12d 4519 . . . . . . 7 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
25 lgamgulm.t . . . . . . 7 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
26 ovex 7395 . . . . . . . 8 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
27 ovex 7395 . . . . . . . 8 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
2826, 27ifex 4541 . . . . . . 7 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
2924, 25, 28fvmpt 6953 . . . . . 6 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
3010, 29syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
31 eqid 2731 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2)))) = (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))
3214, 31, 26fvmpt 6953 . . . . . 6 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
3310, 32syl 17 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
348, 30, 333eqtr4d 2781 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(2 · 𝑅))) → (𝑇𝑛) = ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛))
355, 34seqfeq 13943 . . 3 (𝜑 → seq(2 · 𝑅)( + , 𝑇) = seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))))
36 nnuz 12815 . . . . . 6 ℕ = (ℤ‘1)
37 1zzd 12543 . . . . . 6 (𝜑 → 1 ∈ ℤ)
383nncnd 12178 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
39 2cnd 12240 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
40 1cnd 11159 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
4138, 40addcld 11183 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
4239, 41mulcld 11184 . . . . . . 7 (𝜑 → (2 · (𝑅 + 1)) ∈ ℂ)
4338, 42mulcld 11184 . . . . . 6 (𝜑 → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
44 1lt2 12333 . . . . . . . . . 10 1 < 2
45 2re 12236 . . . . . . . . . . 11 2 ∈ ℝ
46 rere 15019 . . . . . . . . . . 11 (2 ∈ ℝ → (ℜ‘2) = 2)
4745, 46ax-mp 5 . . . . . . . . . 10 (ℜ‘2) = 2
4844, 47breqtrri 5137 . . . . . . . . 9 1 < (ℜ‘2)
4948a1i 11 . . . . . . . 8 (𝜑 → 1 < (ℜ‘2))
50 oveq1 7369 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚𝑐-2) = (𝑛𝑐-2))
51 eqid 2731 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)) = (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))
52 ovex 7395 . . . . . . . . . 10 (𝑛𝑐-2) ∈ V
5350, 51, 52fvmpt 6953 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5453adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) = (𝑛𝑐-2))
5539, 49, 54zetacvg 26401 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ )
56 climdm 15448 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
5755, 56sylib 217 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))) ⇝ ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2)))))
58 simpr 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5958nncnd 12178 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
60 2cnd 12240 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
6160negcld 11508 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -2 ∈ ℂ)
6259, 61cxpcld 26100 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) ∈ ℂ)
6354, 62eqeltrd 2832 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛) ∈ ℂ)
6438adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℂ)
65 1cnd 11159 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
6664, 65addcld 11183 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℂ)
6760, 66mulcld 11184 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℂ)
6864, 67mulcld 11184 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (2 · (𝑅 + 1))) ∈ ℂ)
6959sqcld 14059 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℂ)
7058nnne0d 12212 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
71 2z 12544 . . . . . . . . . . 11 2 ∈ ℤ
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
7359, 70, 72expne0d 14067 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ≠ 0)
7468, 69, 73divrecd 11943 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))))
7564, 67, 69, 73divassd 11975 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) / (𝑛↑2)) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
7659, 70, 60cxpnegd 26107 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐-2) = (1 / (𝑛𝑐2)))
7759, 70, 72cxpexpzd 26103 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛𝑐2) = (𝑛↑2))
7877oveq2d 7378 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛𝑐2)) = (1 / (𝑛↑2)))
7976, 78eqtr2d 2772 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / (𝑛↑2)) = (𝑛𝑐-2))
8079oveq2d 7378 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · (1 / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8174, 75, 803eqtr3d 2779 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8232adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
8354oveq2d 7378 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)) = ((𝑅 · (2 · (𝑅 + 1))) · (𝑛𝑐-2)))
8481, 82, 833eqtr4d 2781 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) = ((𝑅 · (2 · (𝑅 + 1))) · ((𝑚 ∈ ℕ ↦ (𝑚𝑐-2))‘𝑛)))
8536, 37, 43, 57, 63, 84isermulc2 15554 . . . . 5 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))))
86 climrel 15386 . . . . . 6 Rel ⇝
8786releldmi 5908 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ⇝ ((𝑅 · (2 · (𝑅 + 1))) · ( ⇝ ‘seq1( + , (𝑚 ∈ ℕ ↦ (𝑚𝑐-2))))) → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8885, 87syl 17 . . . 4 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
8967, 69, 73divcld 11940 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℂ)
9064, 89mulcld 11184 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℂ)
9182, 90eqeltrd 2832 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))‘𝑛) ∈ ℂ)
9236, 4, 91iserex 15553 . . . 4 (𝜑 → (seq1( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ ))
9388, 92mpbid 231 . . 3 (𝜑 → seq(2 · 𝑅)( + , (𝑚 ∈ ℕ ↦ (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))))) ∈ dom ⇝ )
9435, 93eqeltrd 2832 . 2 (𝜑 → seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ )
9529adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
963adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℕ)
9796nnred 12177 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ ℝ)
9845a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
99 1red 11165 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℝ)
10097, 99readdcld 11193 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
10198, 100remulcld 11194 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
10258nnsqcld 14157 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛↑2) ∈ ℕ)
103101, 102nndivred 12216 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑛↑2)) ∈ ℝ)
10497, 103remulcld 11194 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ ℝ)
10558peano2nnd 12179 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
106105nnrpd 12964 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
10758nnrpd 12964 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
108106, 107rpdivcld 12983 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
109108relogcld 26015 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
11097, 109remulcld 11194 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
11196peano2nnd 12179 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
112111nnrpd 12964 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
113112, 107rpmulcld 12982 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
114113relogcld 26015 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
115 pire 25852 . . . . . . . . 9 π ∈ ℝ
116115a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
117114, 116readdcld 11193 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
118110, 117readdcld 11193 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
119104, 118ifcld 4537 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ ℝ)
12095, 119eqeltrd 2832 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
121120recnd 11192 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
12236, 4, 121iserex 15553 . 2 (𝜑 → (seq1( + , 𝑇) ∈ dom ⇝ ↔ seq(2 · 𝑅)( + , 𝑇) ∈ dom ⇝ ))
12394, 122mpbird 256 1 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3060  {crab 3405  ifcif 4491   class class class wbr 5110  cmpt 5193  dom cdm 5638  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cle 11199  cmin 11394  -cneg 11395   / cdiv 11821  cn 12162  2c2 12217  0cn0 12422  cz 12508  cuz 12772  seqcseq 13916  cexp 13977  cre 14994  abscabs 15131  cli 15378  πcpi 15960  logclog 25947  𝑐ccxp 25948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ioc 13279  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-fac 14184  df-bc 14213  df-hash 14241  df-shft 14964  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-limsup 15365  df-clim 15382  df-rlim 15383  df-sum 15583  df-ef 15961  df-sin 15963  df-cos 15964  df-pi 15966  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-lp 22524  df-perf 22525  df-cn 22615  df-cnp 22616  df-haus 22703  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cncf 24278  df-limc 25267  df-dv 25268  df-log 25949  df-cxp 25950
This theorem is referenced by:  lgamgulmlem6  26420
  Copyright terms: Public domain W3C validator