Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climd Structured version   Visualization version   GIF version

Theorem climd 45701
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climd.1 𝑘𝜑
climd.2 𝑘𝐹
climd.3 𝑍 = (ℤ𝑀)
climd.4 (𝜑𝑀 ∈ ℤ)
climd.5 (𝜑𝐹𝐴)
climd.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climd.7 (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climd (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem climd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 climd.7 . 2 (𝜑𝑋 ∈ ℝ+)
2 climd.5 . . . 4 (𝜑𝐹𝐴)
3 climd.1 . . . . 5 𝑘𝜑
4 climd.2 . . . . 5 𝑘𝐹
5 climd.3 . . . . 5 𝑍 = (ℤ𝑀)
6 climd.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 15508 . . . . . . 7 Rel ⇝
87brrelex1i 5710 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
92, 8syl 17 . . . . 5 (𝜑𝐹 ∈ V)
10 climd.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
113, 4, 5, 6, 9, 10clim2f2 45699 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
122, 11mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1312simprd 495 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
14 breq2 5123 . . . . 5 (𝑥 = 𝑋 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑋))
1514anbi2d 630 . . . 4 (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1615rexralbidv 3207 . . 3 (𝑥 = 𝑋 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1716rspcva 3599 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
181, 13, 17syl2anc 584 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2883  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127   < clt 11269  cmin 11466  cz 12588  cuz 12852  +crp 13008  abscabs 15253  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-clim 15504
This theorem is referenced by:  fnlimabslt  45708
  Copyright terms: Public domain W3C validator