| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climd | Structured version Visualization version GIF version | ||
| Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| climd.1 | ⊢ Ⅎ𝑘𝜑 |
| climd.2 | ⊢ Ⅎ𝑘𝐹 |
| climd.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climd.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climd.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| climd.7 | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| climd | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climd.7 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 2 | climd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 3 | climd.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 4 | climd.2 | . . . . 5 ⊢ Ⅎ𝑘𝐹 | |
| 5 | climd.3 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | climd.4 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | climrel 15508 | . . . . . . 7 ⊢ Rel ⇝ | |
| 8 | 7 | brrelex1i 5710 | . . . . . 6 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 9 | 2, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 10 | climd.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 11 | 3, 4, 5, 6, 9, 10 | clim2f2 45699 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| 12 | 2, 11 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 13 | 12 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 14 | breq2 5123 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑋)) | |
| 15 | 14 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 16 | 15 | rexralbidv 3207 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 17 | 16 | rspcva 3599 | . 2 ⊢ ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| 18 | 1, 13, 17 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 < clt 11269 − cmin 11466 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 abscabs 15253 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-clim 15504 |
| This theorem is referenced by: fnlimabslt 45708 |
| Copyright terms: Public domain | W3C validator |