Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimclimdm Structured version   Visualization version   GIF version

Theorem xlimclimdm 45859
Description: A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimclimdm.1 (𝜑𝑀 ∈ ℤ)
xlimclimdm.2 𝑍 = (ℤ𝑀)
xlimclimdm.3 (𝜑𝐹:𝑍⟶ℝ*)
xlimclimdm.4 (𝜑𝐹~~>*𝐴)
xlimclimdm.5 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
xlimclimdm (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem xlimclimdm
StepHypRef Expression
1 climrel 15465 . 2 Rel ⇝
2 xlimclimdm.4 . . 3 (𝜑𝐹~~>*𝐴)
3 xlimclimdm.1 . . . 4 (𝜑𝑀 ∈ ℤ)
4 xlimclimdm.2 . . . 4 𝑍 = (ℤ𝑀)
5 xlimclimdm.3 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
6 xlimclimdm.5 . . . 4 (𝜑𝐴 ∈ ℝ)
73, 4, 5, 6xlimclim2 45845 . . 3 (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
82, 7mpbid 232 . 2 (𝜑𝐹𝐴)
9 releldm 5911 . 2 ((Rel ⇝ ∧ 𝐹𝐴) → 𝐹 ∈ dom ⇝ )
101, 8, 9sylancr 587 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5110  dom cdm 5641  Rel wrel 5646  wf 6510  cfv 6514  cr 11074  *cxr 11214  cz 12536  cuz 12800  cli 15457  ~~>*clsxlim 45823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-lm 23123  df-xms 24215  df-ms 24216  df-xlim 45824
This theorem is referenced by:  xlimliminflimsup  45867
  Copyright terms: Public domain W3C validator