MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrlim2 Structured version   Visualization version   GIF version

Theorem climrlim2 14486
Description: Produce a real limit from an integer limit, where the real function is only dependent on the integer part of 𝑥. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
climrlim2.1 𝑍 = (ℤ𝑀)
climrlim2.2 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
climrlim2.3 (𝜑𝐴 ⊆ ℝ)
climrlim2.4 (𝜑𝑀 ∈ ℤ)
climrlim2.5 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
climrlim2.6 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
climrlim2.7 ((𝜑𝑥𝐴) → 𝑀𝑥)
Assertion
Ref Expression
climrlim2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑛   𝑥,𝐷   𝑥,𝑛,𝜑   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑥)   𝐷(𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem climrlim2
Dummy variables 𝑗 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrlim2.5 . 2 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
2 eluzelz 11898 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
3 climrlim2.1 . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
42, 3eleq2s 2868 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
54ad2antlr 706 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ∈ ℤ)
6 climrlim2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ)
76sselda 3752 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
87flcld 12807 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
98adantlr 694 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
109ad2ant2r 741 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ ℤ)
11 simprr 756 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗𝑥)
127adantlr 694 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1312ad2ant2r 741 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑥 ∈ ℝ)
14 flge 12814 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1513, 5, 14syl2anc 573 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1611, 15mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ≤ (⌊‘𝑥))
17 eluz2 11894 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑗 ≤ (⌊‘𝑥)))
185, 10, 16, 17syl3anbrc 1428 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ (ℤ𝑗))
19 simpr 471 . . . . . . . . . . . . . 14 ((((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
2019ralimi 3101 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
21 fveq2 6332 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘𝑥) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘(⌊‘𝑥)))
2221fvoveq1d 6815 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘𝑥) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) = (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)))
2322breq1d 4796 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘𝑥) → ((abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 ↔ (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2423rspcv 3456 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2518, 20, 24syl2im 40 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
26 climrlim2.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
2726adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
28 climrlim2.7 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑀𝑥)
29 flge 12814 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
307, 27, 29syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
3128, 30mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ≤ (⌊‘𝑥))
32 eluz2 11894 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑀 ≤ (⌊‘𝑥)))
3327, 8, 31, 32syl3anbrc 1428 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ (ℤ𝑀))
3433, 3syl6eleqr 2861 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ 𝑍)
35 climrlim2.2 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
3635eleq1d 2835 . . . . . . . . . . . . . . . . . 18 (𝑛 = (⌊‘𝑥) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 climrlim2.6 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
3837ralrimiva 3115 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑛𝑍 𝐵 ∈ ℂ)
3938adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑛𝑍 𝐵 ∈ ℂ)
4036, 39, 34rspcdva 3466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
41 eqid 2771 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
4235, 41fvmptg 6422 . . . . . . . . . . . . . . . . 17 (((⌊‘𝑥) ∈ 𝑍𝐶 ∈ ℂ) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4334, 40, 42syl2anc 573 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4443adantlr 694 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4544ad2ant2r 741 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4645fvoveq1d 6815 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) = (abs‘(𝐶𝐷)))
4746breq1d 4796 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦 ↔ (abs‘(𝐶𝐷)) < 𝑦))
4825, 47sylibd 229 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦))
4948expr 444 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (𝑗𝑥 → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦)))
5049com23 86 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5150ralrimdva 3118 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
52 eluzelre 11899 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
5352, 3eleq2s 2868 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453adantl 467 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ ℝ)
5551, 54jctild 515 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5655expimpd 441 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5756reximdv2 3162 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5857ralimdva 3111 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5958adantld 478 . . 3 (𝜑 → ((𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
60 climrel 14431 . . . . . 6 Rel ⇝
6160brrelexi 5298 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑛𝑍𝐵) ∈ V)
621, 61syl 17 . . . 4 (𝜑 → (𝑛𝑍𝐵) ∈ V)
63 eqidd 2772 . . . 4 ((𝜑𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
643, 26, 62, 63clim2 14443 . . 3 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 ↔ (𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦))))
6540ralrimiva 3115 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
66 climcl 14438 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷𝐷 ∈ ℂ)
671, 66syl 17 . . . 4 (𝜑𝐷 ∈ ℂ)
6865, 6, 67rlim2 14435 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
6959, 64, 683imtr4d 283 . 2 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐷))
701, 69mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  wss 3723   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136  cr 10137   < clt 10276  cle 10277  cmin 10468  cz 11579  cuz 11888  +crp 12035  cfl 12799  abscabs 14182  cli 14423  𝑟 crli 14424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fl 12801  df-clim 14427  df-rlim 14428
This theorem is referenced by:  dchrisum0lem2a  25427
  Copyright terms: Public domain W3C validator