MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrlim2 Structured version   Visualization version   GIF version

Theorem climrlim2 14987
Description: Produce a real limit from an integer limit, where the real function is only dependent on the integer part of 𝑥. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
climrlim2.1 𝑍 = (ℤ𝑀)
climrlim2.2 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
climrlim2.3 (𝜑𝐴 ⊆ ℝ)
climrlim2.4 (𝜑𝑀 ∈ ℤ)
climrlim2.5 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
climrlim2.6 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
climrlim2.7 ((𝜑𝑥𝐴) → 𝑀𝑥)
Assertion
Ref Expression
climrlim2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑛   𝑥,𝐷   𝑥,𝑛,𝜑   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑥)   𝐷(𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem climrlim2
Dummy variables 𝑗 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrlim2.5 . 2 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
2 eluzelz 12327 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
3 climrlim2.1 . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
42, 3eleq2s 2851 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
54ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ∈ ℤ)
6 climrlim2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ)
76sselda 3875 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
87flcld 13252 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
98adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
109ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ ℤ)
11 simprr 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗𝑥)
127adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1312ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑥 ∈ ℝ)
14 flge 13259 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1513, 5, 14syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1611, 15mpbid 235 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ≤ (⌊‘𝑥))
17 eluz2 12323 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑗 ≤ (⌊‘𝑥)))
185, 10, 16, 17syl3anbrc 1344 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ (ℤ𝑗))
19 simpr 488 . . . . . . . . . . . . . 14 ((((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
2019ralimi 3075 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
21 fveq2 6668 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘𝑥) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘(⌊‘𝑥)))
2221fvoveq1d 7186 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘𝑥) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) = (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)))
2322breq1d 5037 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘𝑥) → ((abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 ↔ (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2423rspcv 3519 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2518, 20, 24syl2im 40 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
26 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
27 climrlim2.2 . . . . . . . . . . . . . . . . 17 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
28 climrlim2.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
2928adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
30 climrlim2.7 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑀𝑥)
31 flge 13259 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
327, 29, 31syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
3330, 32mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ≤ (⌊‘𝑥))
34 eluz2 12323 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑀 ≤ (⌊‘𝑥)))
3529, 8, 33, 34syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ (ℤ𝑀))
3635, 3eleqtrrdi 2844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ 𝑍)
3727eleq1d 2817 . . . . . . . . . . . . . . . . . 18 (𝑛 = (⌊‘𝑥) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
38 climrlim2.6 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
3938ralrimiva 3096 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑛𝑍 𝐵 ∈ ℂ)
4039adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑛𝑍 𝐵 ∈ ℂ)
4137, 40, 36rspcdva 3526 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
4226, 27, 36, 41fvmptd3 6792 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4342adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4443ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4544fvoveq1d 7186 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) = (abs‘(𝐶𝐷)))
4645breq1d 5037 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦 ↔ (abs‘(𝐶𝐷)) < 𝑦))
4725, 46sylibd 242 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦))
4847expr 460 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (𝑗𝑥 → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦)))
4948com23 86 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5049ralrimdva 3101 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
51 eluzelre 12328 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
5251, 3eleq2s 2851 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5352adantl 485 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ ℝ)
5450, 53jctild 529 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5554expimpd 457 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5655reximdv2 3180 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5756ralimdva 3091 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5857adantld 494 . . 3 (𝜑 → ((𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
59 climrel 14932 . . . . . 6 Rel ⇝
6059brrelex1i 5573 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑛𝑍𝐵) ∈ V)
611, 60syl 17 . . . 4 (𝜑 → (𝑛𝑍𝐵) ∈ V)
62 eqidd 2739 . . . 4 ((𝜑𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
633, 28, 61, 62clim2 14944 . . 3 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 ↔ (𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦))))
6441ralrimiva 3096 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
65 climcl 14939 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷𝐷 ∈ ℂ)
661, 65syl 17 . . . 4 (𝜑𝐷 ∈ ℂ)
6764, 6, 66rlim2 14936 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
6858, 63, 673imtr4d 297 . 2 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐷))
691, 68mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  wrex 3054  Vcvv 3397  wss 3841   class class class wbr 5027  cmpt 5107  cfv 6333  (class class class)co 7164  cc 10606  cr 10607   < clt 10746  cle 10747  cmin 10941  cz 12055  cuz 12317  +crp 12465  cfl 13244  abscabs 14676  cli 14924  𝑟 crli 14925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-fl 13246  df-clim 14928  df-rlim 14929
This theorem is referenced by:  dchrisum0lem2a  26245
  Copyright terms: Public domain W3C validator