MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrlim2 Structured version   Visualization version   GIF version

Theorem climrlim2 15486
Description: Produce a real limit from an integer limit, where the real function is only dependent on the integer part of 𝑥. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
climrlim2.1 𝑍 = (ℤ𝑀)
climrlim2.2 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
climrlim2.3 (𝜑𝐴 ⊆ ℝ)
climrlim2.4 (𝜑𝑀 ∈ ℤ)
climrlim2.5 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
climrlim2.6 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
climrlim2.7 ((𝜑𝑥𝐴) → 𝑀𝑥)
Assertion
Ref Expression
climrlim2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑛   𝑥,𝐷   𝑥,𝑛,𝜑   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑥)   𝐷(𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem climrlim2
Dummy variables 𝑗 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrlim2.5 . 2 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
2 eluzelz 12827 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
3 climrlim2.1 . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
42, 3eleq2s 2852 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
54ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ∈ ℤ)
6 climrlim2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ)
76sselda 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
87flcld 13758 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
98adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
109ad2ant2r 746 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ ℤ)
11 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗𝑥)
127adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1312ad2ant2r 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑥 ∈ ℝ)
14 flge 13765 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1513, 5, 14syl2anc 585 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1611, 15mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ≤ (⌊‘𝑥))
17 eluz2 12823 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑗 ≤ (⌊‘𝑥)))
185, 10, 16, 17syl3anbrc 1344 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ (ℤ𝑗))
19 simpr 486 . . . . . . . . . . . . . 14 ((((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
2019ralimi 3084 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
21 fveq2 6887 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘𝑥) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘(⌊‘𝑥)))
2221fvoveq1d 7425 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘𝑥) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) = (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)))
2322breq1d 5156 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘𝑥) → ((abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 ↔ (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2423rspcv 3607 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2518, 20, 24syl2im 40 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
26 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
27 climrlim2.2 . . . . . . . . . . . . . . . . 17 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
28 climrlim2.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
2928adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
30 climrlim2.7 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑀𝑥)
31 flge 13765 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
327, 29, 31syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
3330, 32mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ≤ (⌊‘𝑥))
34 eluz2 12823 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑀 ≤ (⌊‘𝑥)))
3529, 8, 33, 34syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ (ℤ𝑀))
3635, 3eleqtrrdi 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ 𝑍)
3727eleq1d 2819 . . . . . . . . . . . . . . . . . 18 (𝑛 = (⌊‘𝑥) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
38 climrlim2.6 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
3938ralrimiva 3147 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑛𝑍 𝐵 ∈ ℂ)
4039adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑛𝑍 𝐵 ∈ ℂ)
4137, 40, 36rspcdva 3612 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
4226, 27, 36, 41fvmptd3 7016 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4342adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4443ad2ant2r 746 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4544fvoveq1d 7425 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) = (abs‘(𝐶𝐷)))
4645breq1d 5156 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦 ↔ (abs‘(𝐶𝐷)) < 𝑦))
4725, 46sylibd 238 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦))
4847expr 458 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (𝑗𝑥 → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦)))
4948com23 86 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5049ralrimdva 3155 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
51 eluzelre 12828 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
5251, 3eleq2s 2852 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5352adantl 483 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ ℝ)
5450, 53jctild 527 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5554expimpd 455 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5655reximdv2 3165 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5756ralimdva 3168 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5857adantld 492 . . 3 (𝜑 → ((𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
59 climrel 15431 . . . . . 6 Rel ⇝
6059brrelex1i 5729 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑛𝑍𝐵) ∈ V)
611, 60syl 17 . . . 4 (𝜑 → (𝑛𝑍𝐵) ∈ V)
62 eqidd 2734 . . . 4 ((𝜑𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
633, 28, 61, 62clim2 15443 . . 3 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 ↔ (𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦))))
6441ralrimiva 3147 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
65 climcl 15438 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷𝐷 ∈ ℂ)
661, 65syl 17 . . . 4 (𝜑𝐷 ∈ ℂ)
6764, 6, 66rlim2 15435 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
6858, 63, 673imtr4d 294 . 2 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐷))
691, 68mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  wss 3946   class class class wbr 5146  cmpt 5229  cfv 6539  (class class class)co 7403  cc 11103  cr 11104   < clt 11243  cle 11244  cmin 11439  cz 12553  cuz 12817  +crp 12969  cfl 13750  abscabs 15176  cli 15423  𝑟 crli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-n0 12468  df-z 12554  df-uz 12818  df-fl 13752  df-clim 15427  df-rlim 15428
This theorem is referenced by:  dchrisum0lem2a  26999
  Copyright terms: Public domain W3C validator