MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrlim2 Structured version   Visualization version   GIF version

Theorem climrlim2 15256
Description: Produce a real limit from an integer limit, where the real function is only dependent on the integer part of 𝑥. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
climrlim2.1 𝑍 = (ℤ𝑀)
climrlim2.2 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
climrlim2.3 (𝜑𝐴 ⊆ ℝ)
climrlim2.4 (𝜑𝑀 ∈ ℤ)
climrlim2.5 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
climrlim2.6 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
climrlim2.7 ((𝜑𝑥𝐴) → 𝑀𝑥)
Assertion
Ref Expression
climrlim2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑛   𝑥,𝐷   𝑥,𝑛,𝜑   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑥)   𝐷(𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem climrlim2
Dummy variables 𝑗 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrlim2.5 . 2 (𝜑 → (𝑛𝑍𝐵) ⇝ 𝐷)
2 eluzelz 12592 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
3 climrlim2.1 . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
42, 3eleq2s 2857 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
54ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ∈ ℤ)
6 climrlim2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ)
76sselda 3921 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
87flcld 13518 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
98adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (⌊‘𝑥) ∈ ℤ)
109ad2ant2r 744 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ ℤ)
11 simprr 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗𝑥)
127adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1312ad2ant2r 744 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑥 ∈ ℝ)
14 flge 13525 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1513, 5, 14syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (𝑗𝑥𝑗 ≤ (⌊‘𝑥)))
1611, 15mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → 𝑗 ≤ (⌊‘𝑥))
17 eluz2 12588 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑗 ≤ (⌊‘𝑥)))
185, 10, 16, 17syl3anbrc 1342 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (⌊‘𝑥) ∈ (ℤ𝑗))
19 simpr 485 . . . . . . . . . . . . . 14 ((((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
2019ralimi 3087 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)
21 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘𝑥) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘(⌊‘𝑥)))
2221fvoveq1d 7297 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘𝑥) → (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) = (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)))
2322breq1d 5084 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘𝑥) → ((abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 ↔ (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2423rspcv 3557 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦 → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
2518, 20, 24syl2im 40 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦))
26 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
27 climrlim2.2 . . . . . . . . . . . . . . . . 17 (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶)
28 climrlim2.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
2928adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
30 climrlim2.7 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑀𝑥)
31 flge 13525 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
327, 29, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝑀𝑥𝑀 ≤ (⌊‘𝑥)))
3330, 32mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑀 ≤ (⌊‘𝑥))
34 eluz2 12588 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑀 ≤ (⌊‘𝑥)))
3529, 8, 33, 34syl3anbrc 1342 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ (ℤ𝑀))
3635, 3eleqtrrdi 2850 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (⌊‘𝑥) ∈ 𝑍)
3727eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 = (⌊‘𝑥) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
38 climrlim2.6 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝐵 ∈ ℂ)
3938ralrimiva 3103 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑛𝑍 𝐵 ∈ ℂ)
4039adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑛𝑍 𝐵 ∈ ℂ)
4137, 40, 36rspcdva 3562 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
4226, 27, 36, 41fvmptd3 6898 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4342adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4443ad2ant2r 744 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((𝑛𝑍𝐵)‘(⌊‘𝑥)) = 𝐶)
4544fvoveq1d 7297 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) = (abs‘(𝐶𝐷)))
4645breq1d 5084 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → ((abs‘(((𝑛𝑍𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦 ↔ (abs‘(𝐶𝐷)) < 𝑦))
4725, 46sylibd 238 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ (𝑥𝐴𝑗𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦))
4847expr 457 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (𝑗𝑥 → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶𝐷)) < 𝑦)))
4948com23 86 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑥𝐴) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5049ralrimdva 3106 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
51 eluzelre 12593 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
5251, 3eleq2s 2857 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5352adantl 482 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ ℝ)
5450, 53jctild 526 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5554expimpd 454 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → (𝑗 ∈ ℝ ∧ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦))))
5655reximdv2 3199 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5756ralimdva 3108 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
5857adantld 491 . . 3 (𝜑 → ((𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦)) → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
59 climrel 15201 . . . . . 6 Rel ⇝
6059brrelex1i 5643 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑛𝑍𝐵) ∈ V)
611, 60syl 17 . . . 4 (𝜑 → (𝑛𝑍𝐵) ∈ V)
62 eqidd 2739 . . . 4 ((𝜑𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
633, 28, 61, 62clim2 15213 . . 3 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 ↔ (𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑛𝑍𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛𝑍𝐵)‘𝑘) − 𝐷)) < 𝑦))))
6441ralrimiva 3103 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
65 climcl 15208 . . . . 5 ((𝑛𝑍𝐵) ⇝ 𝐷𝐷 ∈ ℂ)
661, 65syl 17 . . . 4 (𝜑𝐷 ∈ ℂ)
6764, 6, 66rlim2 15205 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → (abs‘(𝐶𝐷)) < 𝑦)))
6858, 63, 673imtr4d 294 . 2 (𝜑 → ((𝑛𝑍𝐵) ⇝ 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐷))
691, 68mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   < clt 11009  cle 11010  cmin 11205  cz 12319  cuz 12582  +crp 12730  cfl 13510  abscabs 14945  cli 15193  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fl 13512  df-clim 15197  df-rlim 15198
This theorem is referenced by:  dchrisum0lem2a  26665
  Copyright terms: Public domain W3C validator