Step | Hyp | Ref
| Expression |
1 | | climrlim2.5 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
2 | | eluzelz 12521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
3 | | climrlim2.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | 2, 3 | eleq2s 2857 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
5 | 4 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → 𝑗 ∈ ℤ) |
6 | | climrlim2.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
7 | 6 | sselda 3917 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
8 | 7 | flcld 13446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (⌊‘𝑥) ∈ ℤ) |
9 | 8 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (⌊‘𝑥) ∈ ℤ) |
10 | 9 | ad2ant2r 743 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℤ) |
11 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → 𝑗 ≤ 𝑥) |
12 | 7 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
13 | 12 | ad2ant2r 743 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
14 | | flge 13453 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ) → (𝑗 ≤ 𝑥 ↔ 𝑗 ≤ (⌊‘𝑥))) |
15 | 13, 5, 14 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (𝑗 ≤ 𝑥 ↔ 𝑗 ≤ (⌊‘𝑥))) |
16 | 11, 15 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → 𝑗 ≤ (⌊‘𝑥)) |
17 | | eluz2 12517 |
. . . . . . . . . . . . . 14
⊢
((⌊‘𝑥)
∈ (ℤ≥‘𝑗) ↔ (𝑗 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑗 ≤ (⌊‘𝑥))) |
18 | 5, 10, 16, 17 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ≥‘𝑗)) |
19 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) |
20 | 19 | ralimi 3086 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) |
21 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (⌊‘𝑥) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥))) |
22 | 21 | fvoveq1d 7277 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (⌊‘𝑥) → (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) = (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷))) |
23 | 22 | breq1d 5080 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘𝑥) → ((abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦 ↔ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦)) |
24 | 23 | rspcv 3547 |
. . . . . . . . . . . . 13
⊢
((⌊‘𝑥)
∈ (ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦 → (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦)) |
25 | 18, 20, 24 | syl2im 40 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦)) |
26 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ 𝐵) |
27 | | climrlim2.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶) |
28 | | climrlim2.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℤ) |
29 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
30 | | climrlim2.7 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝑥) |
31 | | flge 13453 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑥 ↔ 𝑀 ≤ (⌊‘𝑥))) |
32 | 7, 29, 31 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑀 ≤ 𝑥 ↔ 𝑀 ≤ (⌊‘𝑥))) |
33 | 30, 32 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ (⌊‘𝑥)) |
34 | | eluz2 12517 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⌊‘𝑥)
∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (⌊‘𝑥) ∈ ℤ ∧ 𝑀 ≤ (⌊‘𝑥))) |
35 | 29, 8, 33, 34 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (⌊‘𝑥) ∈ (ℤ≥‘𝑀)) |
36 | 35, 3 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (⌊‘𝑥) ∈ 𝑍) |
37 | 27 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (⌊‘𝑥) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
38 | | climrlim2.6 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
39 | 38 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 𝐵 ∈ ℂ) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ 𝑍 𝐵 ∈ ℂ) |
41 | 37, 40, 36 | rspcdva 3554 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
42 | 26, 27, 36, 41 | fvmptd3 6880 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) = 𝐶) |
43 | 42 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) = 𝐶) |
44 | 43 | ad2ant2r 743 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) = 𝐶) |
45 | 44 | fvoveq1d 7277 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷)) = (abs‘(𝐶 − 𝐷))) |
46 | 45 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → ((abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘(⌊‘𝑥)) − 𝐷)) < 𝑦 ↔ (abs‘(𝐶 − 𝐷)) < 𝑦)) |
47 | 25, 46 | sylibd 238 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ (𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥)) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶 − 𝐷)) < 𝑦)) |
48 | 47 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → (𝑗 ≤ 𝑥 → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
49 | 48 | com23 86 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
50 | 49 | ralrimdva 3112 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
51 | | eluzelre 12522 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℝ) |
52 | 51, 3 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
53 | 52 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℝ) |
54 | 50, 53 | jctild 525 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → (𝑗 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦)))) |
55 | 54 | expimpd 453 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦)) → (𝑗 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦)))) |
56 | 55 | reximdv2 3198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
57 | 56 | ralimdva 3102 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
58 | 57 | adantld 490 |
. . 3
⊢ (𝜑 → ((𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦)) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
59 | | climrel 15129 |
. . . . . 6
⊢ Rel
⇝ |
60 | 59 | brrelex1i 5634 |
. . . . 5
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ V) |
61 | 1, 60 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ V) |
62 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
63 | 3, 28, 61, 62 | clim2 15141 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷 ↔ (𝐷 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ ∧ (abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) − 𝐷)) < 𝑦)))) |
64 | 41 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ ℂ) |
65 | | climcl 15136 |
. . . . 5
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷 → 𝐷 ∈ ℂ) |
66 | 1, 65 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ ℂ) |
67 | 64, 6, 66 | rlim2 15133 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ ℝ
∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → (abs‘(𝐶 − 𝐷)) < 𝑦))) |
68 | 58, 63, 67 | 3imtr4d 293 |
. 2
⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷)) |
69 | 1, 68 | mpd 15 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |