MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climge0 Structured version   Visualization version   GIF version

Theorem climge0 15221
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
StepHypRef Expression
1 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climshft2.1 . . . 4 𝑍 = (ℤ𝑀)
32uzsup 13511 . . 3 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
41, 3syl 17 . 2 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5 climrecl.3 . . . 4 (𝜑𝐹𝐴)
6 climrel 15129 . . . . . . 7 Rel ⇝
76brrelex1i 5634 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
85, 7syl 17 . . . . 5 (𝜑𝐹 ∈ V)
9 eqid 2738 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
102, 9climmpt 15208 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
111, 8, 10syl2anc 583 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
125, 11mpbid 231 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴)
13 climrecl.4 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413recnd 10934 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514fmpttd 6971 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
162, 1, 15rlimclim 15183 . . 3 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
1712, 16mpbird 256 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴)
18 climge0.5 . 2 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
194, 17, 13, 18rlimge0 15218 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cmpt 5153  cfv 6418  supcsup 9129  cc 10800  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cz 12249  cuz 12511  cli 15121  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by:  climle  15277  radcnvrat  41821
  Copyright terms: Public domain W3C validator