MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climge0 Structured version   Visualization version   GIF version

Theorem climge0 15493
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
StepHypRef Expression
1 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climshft2.1 . . . 4 𝑍 = (ℤ𝑀)
32uzsup 13769 . . 3 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
41, 3syl 17 . 2 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5 climrecl.3 . . . 4 (𝜑𝐹𝐴)
6 climrel 15401 . . . . . . 7 Rel ⇝
76brrelex1i 5675 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
85, 7syl 17 . . . . 5 (𝜑𝐹 ∈ V)
9 eqid 2733 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
102, 9climmpt 15480 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
111, 8, 10syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
125, 11mpbid 232 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴)
13 climrecl.4 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413recnd 11147 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514fmpttd 7054 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
162, 1, 15rlimclim 15455 . . 3 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴 ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ 𝐴))
1712, 16mpbird 257 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 𝐴)
18 climge0.5 . 2 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
194, 17, 13, 18rlimge0 15490 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093  cmpt 5174  cfv 6486  supcsup 9331  cc 11011  cr 11012  0cc0 11013  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154  cz 12475  cuz 12738  cli 15393  𝑟 crli 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398
This theorem is referenced by:  climle  15549  radcnvrat  44431
  Copyright terms: Public domain W3C validator