| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| climge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climshft2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | uzsup 13769 | . . 3 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
| 5 | climrecl.3 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 6 | climrel 15401 | . . . . . . 7 ⊢ Rel ⇝ | |
| 7 | 6 | brrelex1i 5675 | . . . . . 6 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | eqid 2733 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 10 | 2, 9 | climmpt 15480 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 12 | 5, 11 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴) |
| 13 | climrecl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 14 | 13 | recnd 11147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 15 | 14 | fmpttd 7054 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)):𝑍⟶ℂ) |
| 16 | 2, 1, 15 | rlimclim 15455 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 𝐴 ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ 𝐴)) |
| 17 | 12, 16 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 𝐴) |
| 18 | climge0.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
| 19 | 4, 17, 13, 18 | rlimge0 15490 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 supcsup 9331 ℂcc 11011 ℝcr 11012 0cc0 11013 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 ℤcz 12475 ℤ≥cuz 12738 ⇝ cli 15393 ⇝𝑟 crli 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fl 13698 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 |
| This theorem is referenced by: climle 15549 radcnvrat 44431 |
| Copyright terms: Public domain | W3C validator |