MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgn0 Structured version   Visualization version   GIF version

Theorem ntrivcvgn0 15903
Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1 𝑍 = (ℤ𝑀)
ntrivcvgn0.2 (𝜑𝑀 ∈ ℤ)
ntrivcvgn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgn0.4 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
ntrivcvgn0 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Distinct variable groups:   𝑛,𝐹,𝑦   𝑛,𝑀,𝑦   𝑦,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑛)   𝑋(𝑛)   𝑍(𝑦)

Proof of Theorem ntrivcvgn0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4 (𝜑𝑀 ∈ ℤ)
21uzidd 12861 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
3 ntrivcvgn0.1 . . 3 𝑍 = (ℤ𝑀)
42, 3eleqtrrdi 2844 . 2 (𝜑𝑀𝑍)
5 ntrivcvgn0.3 . . . 4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
6 climrel 15497 . . . . 5 Rel ⇝
76brrelex2i 5709 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ V)
85, 7syl 17 . . 3 (𝜑𝑋 ∈ V)
9 ntrivcvgn0.4 . . . 4 (𝜑𝑋 ≠ 0)
109, 5jca 511 . . 3 (𝜑 → (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))
11 neeq1 2993 . . . 4 (𝑦 = 𝑋 → (𝑦 ≠ 0 ↔ 𝑋 ≠ 0))
12 breq2 5121 . . . 4 (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋))
1311, 12anbi12d 632 . . 3 (𝑦 = 𝑋 → ((𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)))
148, 10, 13spcedv 3575 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))
15 seqeq1 14012 . . . . . 6 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
1615breq1d 5127 . . . . 5 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
1716anbi2d 630 . . . 4 (𝑛 = 𝑀 → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1817exbidv 1920 . . 3 (𝑛 = 𝑀 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1918rspcev 3599 . 2 ((𝑀𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
204, 14, 19syl2anc 584 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wrex 3059  Vcvv 3457   class class class wbr 5117  cfv 6528  0cc0 11122   · cmul 11127  cz 12581  cuz 12845  seqcseq 14009  cli 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-pre-lttri 11196
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-neg 11462  df-z 12582  df-uz 12846  df-seq 14010  df-clim 15493
This theorem is referenced by:  zprodn0  15944
  Copyright terms: Public domain W3C validator