| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrivcvgn0 | Structured version Visualization version GIF version | ||
| Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| ntrivcvgn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ntrivcvgn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ntrivcvgn0.3 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
| ntrivcvgn0.4 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| ntrivcvgn0 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | uzidd 12861 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 3 | ntrivcvgn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrrdi 2844 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 5 | ntrivcvgn0.3 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
| 6 | climrel 15497 | . . . . 5 ⊢ Rel ⇝ | |
| 7 | 6 | brrelex2i 5709 | . . . 4 ⊢ (seq𝑀( · , 𝐹) ⇝ 𝑋 → 𝑋 ∈ V) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | ntrivcvgn0.4 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 10 | 9, 5 | jca 511 | . . 3 ⊢ (𝜑 → (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)) |
| 11 | neeq1 2993 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 0 ↔ 𝑋 ≠ 0)) | |
| 12 | breq2 5121 | . . . 4 ⊢ (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋)) | |
| 13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))) |
| 14 | 8, 10, 13 | spcedv 3575 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 15 | seqeq1 14012 | . . . . . 6 ⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | |
| 16 | 15 | breq1d 5127 | . . . . 5 ⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 17 | 16 | anbi2d 630 | . . . 4 ⊢ (𝑛 = 𝑀 → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 18 | 17 | exbidv 1920 | . . 3 ⊢ (𝑛 = 𝑀 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 19 | 18 | rspcev 3599 | . 2 ⊢ ((𝑀 ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 20 | 4, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 Vcvv 3457 class class class wbr 5117 ‘cfv 6528 0cc0 11122 · cmul 11127 ℤcz 12581 ℤ≥cuz 12845 seqcseq 14009 ⇝ cli 15489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-pre-lttri 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-neg 11462 df-z 12582 df-uz 12846 df-seq 14010 df-clim 15493 |
| This theorem is referenced by: zprodn0 15944 |
| Copyright terms: Public domain | W3C validator |