MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgn0 Structured version   Visualization version   GIF version

Theorem ntrivcvgn0 15934
Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1 𝑍 = (ℤ𝑀)
ntrivcvgn0.2 (𝜑𝑀 ∈ ℤ)
ntrivcvgn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgn0.4 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
ntrivcvgn0 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Distinct variable groups:   𝑛,𝐹,𝑦   𝑛,𝑀,𝑦   𝑦,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑛)   𝑋(𝑛)   𝑍(𝑦)

Proof of Theorem ntrivcvgn0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4 (𝜑𝑀 ∈ ℤ)
21uzidd 12894 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
3 ntrivcvgn0.1 . . 3 𝑍 = (ℤ𝑀)
42, 3eleqtrrdi 2852 . 2 (𝜑𝑀𝑍)
5 ntrivcvgn0.3 . . . 4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
6 climrel 15528 . . . . 5 Rel ⇝
76brrelex2i 5742 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ V)
85, 7syl 17 . . 3 (𝜑𝑋 ∈ V)
9 ntrivcvgn0.4 . . . 4 (𝜑𝑋 ≠ 0)
109, 5jca 511 . . 3 (𝜑 → (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))
11 neeq1 3003 . . . 4 (𝑦 = 𝑋 → (𝑦 ≠ 0 ↔ 𝑋 ≠ 0))
12 breq2 5147 . . . 4 (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋))
1311, 12anbi12d 632 . . 3 (𝑦 = 𝑋 → ((𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)))
148, 10, 13spcedv 3598 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))
15 seqeq1 14045 . . . . . 6 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
1615breq1d 5153 . . . . 5 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
1716anbi2d 630 . . . 4 (𝑛 = 𝑀 → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1817exbidv 1921 . . 3 (𝑛 = 𝑀 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1918rspcev 3622 . 2 ((𝑀𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
204, 14, 19syl2anc 584 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  Vcvv 3480   class class class wbr 5143  cfv 6561  0cc0 11155   · cmul 11160  cz 12613  cuz 12878  seqcseq 14042  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-seq 14043  df-clim 15524
This theorem is referenced by:  zprodn0  15975
  Copyright terms: Public domain W3C validator