| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrivcvgn0 | Structured version Visualization version GIF version | ||
| Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| ntrivcvgn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ntrivcvgn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ntrivcvgn0.3 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
| ntrivcvgn0.4 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| ntrivcvgn0 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | uzidd 12748 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 3 | ntrivcvgn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrrdi 2842 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 5 | ntrivcvgn0.3 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
| 6 | climrel 15399 | . . . . 5 ⊢ Rel ⇝ | |
| 7 | 6 | brrelex2i 5673 | . . . 4 ⊢ (seq𝑀( · , 𝐹) ⇝ 𝑋 → 𝑋 ∈ V) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | ntrivcvgn0.4 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 10 | 9, 5 | jca 511 | . . 3 ⊢ (𝜑 → (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)) |
| 11 | neeq1 2990 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 0 ↔ 𝑋 ≠ 0)) | |
| 12 | breq2 5095 | . . . 4 ⊢ (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋)) | |
| 13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))) |
| 14 | 8, 10, 13 | spcedv 3553 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 15 | seqeq1 13911 | . . . . . 6 ⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | |
| 16 | 15 | breq1d 5101 | . . . . 5 ⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 17 | 16 | anbi2d 630 | . . . 4 ⊢ (𝑛 = 𝑀 → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 18 | 17 | exbidv 1922 | . . 3 ⊢ (𝑛 = 𝑀 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 19 | 18 | rspcev 3577 | . 2 ⊢ ((𝑀 ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 20 | 4, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 class class class wbr 5091 ‘cfv 6481 0cc0 11006 · cmul 11011 ℤcz 12468 ℤ≥cuz 12732 seqcseq 13908 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-seq 13909 df-clim 15395 |
| This theorem is referenced by: zprodn0 15846 |
| Copyright terms: Public domain | W3C validator |