| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrivcvgn0 | Structured version Visualization version GIF version | ||
| Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| ntrivcvgn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ntrivcvgn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ntrivcvgn0.3 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
| ntrivcvgn0.4 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| ntrivcvgn0 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | uzidd 12816 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 3 | ntrivcvgn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrrdi 2840 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 5 | ntrivcvgn0.3 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
| 6 | climrel 15465 | . . . . 5 ⊢ Rel ⇝ | |
| 7 | 6 | brrelex2i 5698 | . . . 4 ⊢ (seq𝑀( · , 𝐹) ⇝ 𝑋 → 𝑋 ∈ V) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | ntrivcvgn0.4 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 10 | 9, 5 | jca 511 | . . 3 ⊢ (𝜑 → (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)) |
| 11 | neeq1 2988 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 0 ↔ 𝑋 ≠ 0)) | |
| 12 | breq2 5114 | . . . 4 ⊢ (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋)) | |
| 13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))) |
| 14 | 8, 10, 13 | spcedv 3567 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 15 | seqeq1 13976 | . . . . . 6 ⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | |
| 16 | 15 | breq1d 5120 | . . . . 5 ⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 17 | 16 | anbi2d 630 | . . . 4 ⊢ (𝑛 = 𝑀 → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 18 | 17 | exbidv 1921 | . . 3 ⊢ (𝑛 = 𝑀 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 19 | 18 | rspcev 3591 | . 2 ⊢ ((𝑀 ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 20 | 4, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 0cc0 11075 · cmul 11080 ℤcz 12536 ℤ≥cuz 12800 seqcseq 13973 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-seq 13974 df-clim 15461 |
| This theorem is referenced by: zprodn0 15912 |
| Copyright terms: Public domain | W3C validator |