Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminf | Structured version Visualization version GIF version |
Description: A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminf.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climliminf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climliminf.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
climliminf | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminf.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | climliminf.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | climliminf.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | 1, 2, 3 | climlimsup 43687 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
5 | 4 | biimpd 228 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ → 𝐹 ⇝ (lim sup‘𝐹))) |
6 | 5 | imp 408 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ (lim sup‘𝐹)) |
7 | 1 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
8 | 3 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ) |
9 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) | |
10 | 7, 2, 8, 9 | climliminflimsupd 43728 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
11 | 6, 10 | breqtrrd 5125 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ (lim inf‘𝐹)) |
12 | climrel 15301 | . . . 4 ⊢ Rel ⇝ | |
13 | 12 | releldmi 5894 | . . 3 ⊢ (𝐹 ⇝ (lim inf‘𝐹) → 𝐹 ∈ dom ⇝ ) |
14 | 13 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝐹 ⇝ (lim inf‘𝐹)) → 𝐹 ∈ dom ⇝ ) |
15 | 11, 14 | impbida 799 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 ℝcr 10976 ℤcz 12425 ℤ≥cuz 12688 lim supclsp 15279 ⇝ cli 15293 lim infclsi 43678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-sup 9304 df-inf 9305 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-ico 13191 df-fl 13618 df-seq 13828 df-exp 13889 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-liminf 43679 |
This theorem is referenced by: climliminflimsup 43735 dmclimxlim 43778 |
Copyright terms: Public domain | W3C validator |