| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminf | Structured version Visualization version GIF version | ||
| Description: A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climliminf.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climliminf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climliminf.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| climliminf | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climliminf.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climliminf.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | climliminf.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | 1, 2, 3 | climlimsup 45798 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 5 | 4 | biimpd 229 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ → 𝐹 ⇝ (lim sup‘𝐹))) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ (lim sup‘𝐹)) |
| 7 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
| 8 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) | |
| 10 | 7, 2, 8, 9 | climliminflimsupd 45839 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 11 | 6, 10 | breqtrrd 5114 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ (lim inf‘𝐹)) |
| 12 | climrel 15394 | . . . 4 ⊢ Rel ⇝ | |
| 13 | 12 | releldmi 5883 | . . 3 ⊢ (𝐹 ⇝ (lim inf‘𝐹) → 𝐹 ∈ dom ⇝ ) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐹 ⇝ (lim inf‘𝐹)) → 𝐹 ∈ dom ⇝ ) |
| 15 | 11, 14 | impbida 800 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 ℝcr 11000 ℤcz 12463 ℤ≥cuz 12727 lim supclsp 15372 ⇝ cli 15386 lim infclsi 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-ico 13246 df-fl 13691 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-liminf 45790 |
| This theorem is referenced by: climliminflimsup 45846 dmclimxlim 45889 |
| Copyright terms: Public domain | W3C validator |