Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminf | Structured version Visualization version GIF version |
Description: A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminf.1 | β’ (π β π β β€) |
climliminf.2 | β’ π = (β€β₯βπ) |
climliminf.3 | β’ (π β πΉ:πβΆβ) |
Ref | Expression |
---|---|
climliminf | β’ (π β (πΉ β dom β β πΉ β (lim infβπΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminf.1 | . . . . . 6 β’ (π β π β β€) | |
2 | climliminf.2 | . . . . . 6 β’ π = (β€β₯βπ) | |
3 | climliminf.3 | . . . . . 6 β’ (π β πΉ:πβΆβ) | |
4 | 1, 2, 3 | climlimsup 43349 | . . . . 5 β’ (π β (πΉ β dom β β πΉ β (lim supβπΉ))) |
5 | 4 | biimpd 228 | . . . 4 β’ (π β (πΉ β dom β β πΉ β (lim supβπΉ))) |
6 | 5 | imp 408 | . . 3 β’ ((π β§ πΉ β dom β ) β πΉ β (lim supβπΉ)) |
7 | 1 | adantr 482 | . . . 4 β’ ((π β§ πΉ β dom β ) β π β β€) |
8 | 3 | adantr 482 | . . . 4 β’ ((π β§ πΉ β dom β ) β πΉ:πβΆβ) |
9 | simpr 486 | . . . 4 β’ ((π β§ πΉ β dom β ) β πΉ β dom β ) | |
10 | 7, 2, 8, 9 | climliminflimsupd 43390 | . . 3 β’ ((π β§ πΉ β dom β ) β (lim infβπΉ) = (lim supβπΉ)) |
11 | 6, 10 | breqtrrd 5109 | . 2 β’ ((π β§ πΉ β dom β ) β πΉ β (lim infβπΉ)) |
12 | climrel 15242 | . . . 4 β’ Rel β | |
13 | 12 | releldmi 5865 | . . 3 β’ (πΉ β (lim infβπΉ) β πΉ β dom β ) |
14 | 13 | adantl 483 | . 2 β’ ((π β§ πΉ β (lim infβπΉ)) β πΉ β dom β ) |
15 | 11, 14 | impbida 799 | 1 β’ (π β (πΉ β dom β β πΉ β (lim infβπΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1539 β wcel 2104 class class class wbr 5081 dom cdm 5596 βΆwf 6450 βcfv 6454 βcr 10912 β€cz 12361 β€β₯cuz 12624 lim supclsp 15220 β cli 15234 lim infclsi 43340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-cnex 10969 ax-resscn 10970 ax-1cn 10971 ax-icn 10972 ax-addcl 10973 ax-addrcl 10974 ax-mulcl 10975 ax-mulrcl 10976 ax-mulcom 10977 ax-addass 10978 ax-mulass 10979 ax-distr 10980 ax-i2m1 10981 ax-1ne0 10982 ax-1rid 10983 ax-rnegex 10984 ax-rrecex 10985 ax-cnre 10986 ax-pre-lttri 10987 ax-pre-lttrn 10988 ax-pre-ltadd 10989 ax-pre-mulgt0 10990 ax-pre-sup 10991 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-isom 6463 df-riota 7260 df-ov 7306 df-oprab 7307 df-mpo 7308 df-om 7741 df-1st 7859 df-2nd 7860 df-frecs 8124 df-wrecs 8155 df-recs 8229 df-rdg 8268 df-er 8525 df-pm 8645 df-en 8761 df-dom 8762 df-sdom 8763 df-sup 9241 df-inf 9242 df-pnf 11053 df-mnf 11054 df-xr 11055 df-ltxr 11056 df-le 11057 df-sub 11249 df-neg 11250 df-div 11675 df-nn 12016 df-2 12078 df-3 12079 df-n0 12276 df-z 12362 df-uz 12625 df-q 12731 df-rp 12773 df-xneg 12890 df-ico 13127 df-fl 13554 df-seq 13764 df-exp 13825 df-cj 14851 df-re 14852 df-im 14853 df-sqrt 14987 df-abs 14988 df-limsup 15221 df-clim 15238 df-rlim 15239 df-liminf 43341 |
This theorem is referenced by: climliminflimsup 43397 dmclimxlim 43440 |
Copyright terms: Public domain | W3C validator |