Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcnds Structured version   Visualization version   GIF version

Theorem climcnds 15267
 Description: The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcnds (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climcnds
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12334 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12065 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
3 1zzd 12065 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4 nnnn0 11954 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5 climcnds.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6 2nn 11760 . . . . . . . . . . . 12 2 ∈ ℕ
7 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8 nnexpcl 13505 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
96, 7, 8sylancr 590 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
109nnred 11702 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
11 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
1211eleq1d 2836 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
13 climcnds.1 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
1413ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1514adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1612, 15, 9rspcdva 3545 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
1710, 16remulcld 10722 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
185, 17eqeltrd 2852 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
194, 18sylan2 595 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
201, 3, 19serfre 13462 . . . . . 6 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
2120adantr 484 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺):ℕ⟶ℝ)
22 simpr 488 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
2322, 1eleqtrdi 2862 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
24 nnz 12056 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2524adantl 485 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
26 uzid 12310 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
27 peano2uz 12354 . . . . . . . 8 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
2825, 26, 273syl 18 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ (ℤ𝑗))
29 simpl 486 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝜑)
30 elfznn 12998 . . . . . . . 8 (𝑛 ∈ (1...(𝑗 + 1)) → 𝑛 ∈ ℕ)
3129, 30, 19syl2an 598 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑗 + 1))) → (𝐺𝑛) ∈ ℝ)
32 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
33 elfz1eq 12980 . . . . . . . . . 10 (𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑛 = (𝑗 + 1))
3433adantl 485 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 = (𝑗 + 1))
35 nnnn0 11954 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
36 peano2nn0 11987 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
3837ad2antlr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → (𝑗 + 1) ∈ ℕ0)
3934, 38eqeltrd 2852 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 ∈ ℕ0)
409nnnn0d 12007 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ0)
4140nn0ge0d 12010 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (2↑𝑛))
4211breq2d 5048 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(2↑𝑛))))
43 climcnds.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
4443ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4544adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4642, 45, 9rspcdva 3545 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐹‘(2↑𝑛)))
4710, 16, 41, 46mulge0d 11268 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ ((2↑𝑛) · (𝐹‘(2↑𝑛))))
4847, 5breqtrrd 5064 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
4932, 39, 48syl2anc 587 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐺𝑛))
5023, 28, 31, 49sermono 13465 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
5150adantlr 714 . . . . 5 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
52 2re 11761 . . . . . . 7 2 ∈ ℝ
53 eqidd 2759 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5413adantlr 714 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
55 simpr 488 . . . . . . . 8 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
561, 2, 53, 54, 55isumrecl 15181 . . . . . . 7 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
57 remulcl 10673 . . . . . . 7 ((2 ∈ ℝ ∧ Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5852, 56, 57sylancr 590 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5921ffvelrnda 6848 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
601, 3, 13serfre 13462 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
6160ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
6235adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
63 nnexpcl 13505 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
646, 62, 63sylancr 590 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
6561, 64ffvelrnd 6849 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
66 remulcl 10673 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6752, 65, 66sylancr 590 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6858adantr 484 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
69 climcnds.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7013, 43, 69, 5climcndslem2 15266 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
7170adantlr 714 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
72 eqidd 2759 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
7364, 1eleqtrdi 2862 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
74 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
75 elfznn 12998 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
7613recnd 10720 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
7774, 75, 76syl2an 598 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
7872, 73, 77fsumser 15148 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
79 1zzd 12065 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
80 fzfid 13403 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
8175ssriv 3898 . . . . . . . . . . . 12 (1...(2↑𝑗)) ⊆ ℕ
8281a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ⊆ ℕ)
83 eqidd 2759 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8413ad4ant14 751 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
8543ad4ant14 751 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
86 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
871, 79, 80, 82, 83, 84, 85, 86isumless 15261 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8878, 87eqbrtrrd 5060 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8956adantr 484 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
90 2rp 12448 . . . . . . . . . . 11 2 ∈ ℝ+
9190a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
9265, 89, 91lemul2d 12529 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘) ↔ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))))
9388, 92mpbid 235 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9459, 67, 68, 71, 93letrd 10848 . . . . . . 7 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9594ralrimiva 3113 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
96 brralrspcev 5096 . . . . . 6 (((2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
9758, 95, 96syl2anc 587 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
981, 2, 21, 51, 97climsup 15087 . . . 4 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ))
99 climrel 14910 . . . . 5 Rel ⇝
10099releldmi 5794 . . . 4 (seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ) → seq1( + , 𝐺) ∈ dom ⇝ )
10198, 100syl 17 . . 3 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ∈ dom ⇝ )
102 nn0uz 12333 . . . . 5 0 = (ℤ‘0)
103 1nn0 11963 . . . . . 6 1 ∈ ℕ0
104103a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10518recnd 10720 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℂ)
106102, 104, 105iserex 15074 . . . 4 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
107106biimpar 481 . . 3 ((𝜑 ∧ seq1( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
108101, 107syldan 594 . 2 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
109 1zzd 12065 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 1 ∈ ℤ)
11060adantr 484 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
111 elfznn 12998 . . . . . . 7 (𝑘 ∈ (1...(𝑗 + 1)) → 𝑘 ∈ ℕ)
11229, 111, 13syl2an 598 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑗 + 1))) → (𝐹𝑘) ∈ ℝ)
113 simpll 766 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
114 peano2nn 11699 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
115114adantl 485 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
116 elfz1eq 12980 . . . . . . . 8 (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 = (𝑗 + 1))
117 eleq1 2839 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
118117biimparc 483 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 = (𝑗 + 1)) → 𝑘 ∈ ℕ)
119115, 116, 118syl2an 598 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ ℕ)
120113, 119, 43syl2anc 587 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹𝑘))
12123, 28, 112, 120sermono 13465 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
122121adantlr 714 . . . 4 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
123 0zd 12045 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 0 ∈ ℤ)
124 eqidd 2759 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
12518adantlr 714 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
126 simpr 488 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
127102, 123, 124, 125, 126isumrecl 15181 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
128110ffvelrnda 6848 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ∈ ℝ)
129 0zd 12045 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
130102, 129, 18serfre 13462 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
131130adantr 484 . . . . . . . 8 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺):ℕ0⟶ℝ)
132 ffvelrn 6846 . . . . . . . 8 ((seq0( + , 𝐺):ℕ0⟶ℝ ∧ 𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
133131, 35, 132syl2an 598 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
134127adantr 484 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
135110adantr 484 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
136 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
13724adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
13837adantl 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
139138nn0red 12008 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℝ)
140 nnexpcl 13505 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
1416, 138, 140sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
142141nnred 11702 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℝ)
143 2z 12066 . . . . . . . . . . . . . . 15 2 ∈ ℤ
144 uzid 12310 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
145143, 144ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
146 bernneq3 13655 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ (𝑗 + 1) ∈ ℕ0) → (𝑗 + 1) < (2↑(𝑗 + 1)))
147145, 138, 146sylancr 590 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) < (2↑(𝑗 + 1)))
148139, 142, 147ltled 10839 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≤ (2↑(𝑗 + 1)))
149137peano2zd 12142 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℤ)
150141nnzd 12138 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
151 eluz 12309 . . . . . . . . . . . . 13 (((𝑗 + 1) ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
152149, 150, 151syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
153148, 152mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)))
154 eluzp1m1 12321 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1))) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
155137, 153, 154syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
156 eluznn 12371 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗)) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
157136, 155, 156syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
158135, 157ffvelrnd 6849 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ∈ ℝ)
15923adantlr 714 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
160 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
161 elfznn 12998 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
162160, 161, 13syl2an 598 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
163114adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
164 elfzuz 12965 . . . . . . . . . . 11 (𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ‘(𝑗 + 1)))
165 eluznn 12371 . . . . . . . . . . 11 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℕ)
166163, 164, 165syl2an 598 . . . . . . . . . 10 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
167160, 166, 43syl2an2r 684 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 0 ≤ (𝐹𝑘))
168159, 155, 162, 167sermono 13465 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
16935adantl 485 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
17013, 43, 69, 5climcndslem1 15265 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
171160, 169, 170syl2anc 587 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
172128, 158, 133, 168, 171letrd 10848 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq0( + , 𝐺)‘𝑗))
173 eqidd 2759 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) = (𝐺𝑛))
174169, 102eleqtrdi 2862 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘0))
175 elfznn0 13062 . . . . . . . . . 10 (𝑛 ∈ (0...𝑗) → 𝑛 ∈ ℕ0)
176160, 175, 105syl2an 598 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) ∈ ℂ)
177173, 174, 176fsumser 15148 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) = (seq0( + , 𝐺)‘𝑗))
178 0zd 12045 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
179 fzfid 13403 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ∈ Fin)
180175ssriv 3898 . . . . . . . . . 10 (0...𝑗) ⊆ ℕ0
181180a1i 11 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ⊆ ℕ0)
182 eqidd 2759 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
18318ad4ant14 751 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
18448ad4ant14 751 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
185 simplr 768 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
186102, 178, 179, 181, 182, 183, 184, 185isumless 15261 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
187177, 186eqbrtrrd 5060 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
188128, 133, 134, 172, 187letrd 10848 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
189188ralrimiva 3113 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
190 brralrspcev 5096 . . . . 5 ((Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
191127, 189, 190syl2anc 587 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
1921, 109, 110, 122, 191climsup 15087 . . 3 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ))
19399releldmi 5794 . . 3 (seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ) → seq1( + , 𝐹) ∈ dom ⇝ )
194192, 193syl 17 . 2 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
195108, 194impbida 800 1 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ⊆ wss 3860   class class class wbr 5036  dom cdm 5528  ran crn 5529  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156  supcsup 8950  ℂcc 10586  ℝcr 10587  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593   < clt 10726   ≤ cle 10727   − cmin 10921  ℕcn 11687  2c2 11742  ℕ0cn0 11947  ℤcz 12033  ℤ≥cuz 12295  ℝ+crp 12443  ...cfz 12952  seqcseq 13431  ↑cexp 13492   ⇝ cli 14902  Σcsu 15103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-oi 9020  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-ico 12798  df-fz 12953  df-fzo 13096  df-fl 13224  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-rlim 14907  df-sum 15104 This theorem is referenced by:  harmonic  15275  zetacvg  25712
 Copyright terms: Public domain W3C validator