MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcnds Structured version   Visualization version   GIF version

Theorem climcnds 15855
Description: The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcnds (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climcnds
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12917 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12645 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
3 1zzd 12645 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4 nnnn0 12531 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5 climcnds.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6 2nn 12337 . . . . . . . . . . . 12 2 ∈ ℕ
7 simpr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8 nnexpcl 14094 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
96, 7, 8sylancr 585 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
109nnred 12279 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
11 fveq2 6901 . . . . . . . . . . . 12 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
1211eleq1d 2811 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
13 climcnds.1 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
1413ralrimiva 3136 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1514adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1612, 15, 9rspcdva 3609 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
1710, 16remulcld 11294 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
185, 17eqeltrd 2826 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
194, 18sylan2 591 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
201, 3, 19serfre 14051 . . . . . 6 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
2120adantr 479 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺):ℕ⟶ℝ)
22 simpr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
2322, 1eleqtrdi 2836 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
24 nnz 12631 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2524adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
26 uzid 12889 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
27 peano2uz 12937 . . . . . . . 8 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
2825, 26, 273syl 18 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ (ℤ𝑗))
29 simpl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝜑)
30 elfznn 13584 . . . . . . . 8 (𝑛 ∈ (1...(𝑗 + 1)) → 𝑛 ∈ ℕ)
3129, 30, 19syl2an 594 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑗 + 1))) → (𝐺𝑛) ∈ ℝ)
32 simpll 765 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
33 elfz1eq 13566 . . . . . . . . . 10 (𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑛 = (𝑗 + 1))
3433adantl 480 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 = (𝑗 + 1))
35 nnnn0 12531 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
36 peano2nn0 12564 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
3837ad2antlr 725 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → (𝑗 + 1) ∈ ℕ0)
3934, 38eqeltrd 2826 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 ∈ ℕ0)
409nnnn0d 12584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ0)
4140nn0ge0d 12587 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (2↑𝑛))
4211breq2d 5165 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(2↑𝑛))))
43 climcnds.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
4443ralrimiva 3136 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4544adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4642, 45, 9rspcdva 3609 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐹‘(2↑𝑛)))
4710, 16, 41, 46mulge0d 11841 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ ((2↑𝑛) · (𝐹‘(2↑𝑛))))
4847, 5breqtrrd 5181 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
4932, 39, 48syl2anc 582 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐺𝑛))
5023, 28, 31, 49sermono 14054 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
5150adantlr 713 . . . . 5 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
52 2re 12338 . . . . . . 7 2 ∈ ℝ
53 eqidd 2727 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5413adantlr 713 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
55 simpr 483 . . . . . . . 8 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
561, 2, 53, 54, 55isumrecl 15769 . . . . . . 7 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
57 remulcl 11243 . . . . . . 7 ((2 ∈ ℝ ∧ Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5852, 56, 57sylancr 585 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5921ffvelcdmda 7098 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
601, 3, 13serfre 14051 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
6160ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
6235adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
63 nnexpcl 14094 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
646, 62, 63sylancr 585 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
6561, 64ffvelcdmd 7099 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
66 remulcl 11243 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6752, 65, 66sylancr 585 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6858adantr 479 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
69 climcnds.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7013, 43, 69, 5climcndslem2 15854 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
7170adantlr 713 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
72 eqidd 2727 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
7364, 1eleqtrdi 2836 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
74 simpll 765 . . . . . . . . . . . 12 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
75 elfznn 13584 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
7613recnd 11292 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
7774, 75, 76syl2an 594 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
7872, 73, 77fsumser 15734 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
79 1zzd 12645 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
80 fzfid 13993 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
8175ssriv 3983 . . . . . . . . . . . 12 (1...(2↑𝑗)) ⊆ ℕ
8281a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ⊆ ℕ)
83 eqidd 2727 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8413ad4ant14 750 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
8543ad4ant14 750 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
86 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
871, 79, 80, 82, 83, 84, 85, 86isumless 15849 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8878, 87eqbrtrrd 5177 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8956adantr 479 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
90 2rp 13033 . . . . . . . . . . 11 2 ∈ ℝ+
9190a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
9265, 89, 91lemul2d 13114 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘) ↔ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))))
9388, 92mpbid 231 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9459, 67, 68, 71, 93letrd 11421 . . . . . . 7 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9594ralrimiva 3136 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
96 brralrspcev 5213 . . . . . 6 (((2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
9758, 95, 96syl2anc 582 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
981, 2, 21, 51, 97climsup 15674 . . . 4 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ))
99 climrel 15494 . . . . 5 Rel ⇝
10099releldmi 5954 . . . 4 (seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ) → seq1( + , 𝐺) ∈ dom ⇝ )
10198, 100syl 17 . . 3 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ∈ dom ⇝ )
102 nn0uz 12916 . . . . 5 0 = (ℤ‘0)
103 1nn0 12540 . . . . . 6 1 ∈ ℕ0
104103a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10518recnd 11292 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℂ)
106102, 104, 105iserex 15661 . . . 4 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
107106biimpar 476 . . 3 ((𝜑 ∧ seq1( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
108101, 107syldan 589 . 2 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
109 1zzd 12645 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 1 ∈ ℤ)
11060adantr 479 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
111 elfznn 13584 . . . . . . 7 (𝑘 ∈ (1...(𝑗 + 1)) → 𝑘 ∈ ℕ)
11229, 111, 13syl2an 594 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑗 + 1))) → (𝐹𝑘) ∈ ℝ)
113 simpll 765 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
114 peano2nn 12276 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
115114adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
116 elfz1eq 13566 . . . . . . . 8 (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 = (𝑗 + 1))
117 eleq1 2814 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
118117biimparc 478 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 = (𝑗 + 1)) → 𝑘 ∈ ℕ)
119115, 116, 118syl2an 594 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ ℕ)
120113, 119, 43syl2anc 582 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹𝑘))
12123, 28, 112, 120sermono 14054 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
122121adantlr 713 . . . 4 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
123 0zd 12622 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 0 ∈ ℤ)
124 eqidd 2727 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
12518adantlr 713 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
126 simpr 483 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
127102, 123, 124, 125, 126isumrecl 15769 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
128110ffvelcdmda 7098 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ∈ ℝ)
129 0zd 12622 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
130102, 129, 18serfre 14051 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
131130adantr 479 . . . . . . . 8 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺):ℕ0⟶ℝ)
132 ffvelcdm 7095 . . . . . . . 8 ((seq0( + , 𝐺):ℕ0⟶ℝ ∧ 𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
133131, 35, 132syl2an 594 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
134127adantr 479 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
135110adantr 479 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
136 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
13724adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
13837adantl 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
139138nn0red 12585 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℝ)
140 nnexpcl 14094 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
1416, 138, 140sylancr 585 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
142141nnred 12279 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℝ)
143 2z 12646 . . . . . . . . . . . . . . 15 2 ∈ ℤ
144 uzid 12889 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
145143, 144ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
146 bernneq3 14248 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ (𝑗 + 1) ∈ ℕ0) → (𝑗 + 1) < (2↑(𝑗 + 1)))
147145, 138, 146sylancr 585 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) < (2↑(𝑗 + 1)))
148139, 142, 147ltled 11412 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≤ (2↑(𝑗 + 1)))
149137peano2zd 12721 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℤ)
150141nnzd 12637 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
151 eluz 12888 . . . . . . . . . . . . 13 (((𝑗 + 1) ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
152149, 150, 151syl2anc 582 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
153148, 152mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)))
154 eluzp1m1 12900 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1))) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
155137, 153, 154syl2anc 582 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
156 eluznn 12954 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗)) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
157136, 155, 156syl2anc 582 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
158135, 157ffvelcdmd 7099 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ∈ ℝ)
15923adantlr 713 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
160 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
161 elfznn 13584 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
162160, 161, 13syl2an 594 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
163114adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
164 elfzuz 13551 . . . . . . . . . . 11 (𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ‘(𝑗 + 1)))
165 eluznn 12954 . . . . . . . . . . 11 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℕ)
166163, 164, 165syl2an 594 . . . . . . . . . 10 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
167160, 166, 43syl2an2r 683 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 0 ≤ (𝐹𝑘))
168159, 155, 162, 167sermono 14054 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
16935adantl 480 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
17013, 43, 69, 5climcndslem1 15853 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
171160, 169, 170syl2anc 582 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
172128, 158, 133, 168, 171letrd 11421 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq0( + , 𝐺)‘𝑗))
173 eqidd 2727 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) = (𝐺𝑛))
174169, 102eleqtrdi 2836 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘0))
175 elfznn0 13648 . . . . . . . . . 10 (𝑛 ∈ (0...𝑗) → 𝑛 ∈ ℕ0)
176160, 175, 105syl2an 594 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) ∈ ℂ)
177173, 174, 176fsumser 15734 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) = (seq0( + , 𝐺)‘𝑗))
178 0zd 12622 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
179 fzfid 13993 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ∈ Fin)
180175ssriv 3983 . . . . . . . . . 10 (0...𝑗) ⊆ ℕ0
181180a1i 11 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ⊆ ℕ0)
182 eqidd 2727 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
18318ad4ant14 750 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
18448ad4ant14 750 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
185 simplr 767 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
186102, 178, 179, 181, 182, 183, 184, 185isumless 15849 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
187177, 186eqbrtrrd 5177 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
188128, 133, 134, 172, 187letrd 11421 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
189188ralrimiva 3136 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
190 brralrspcev 5213 . . . . 5 ((Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
191127, 189, 190syl2anc 582 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
1921, 109, 110, 122, 191climsup 15674 . . 3 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ))
19399releldmi 5954 . . 3 (seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ) → seq1( + , 𝐹) ∈ dom ⇝ )
194192, 193syl 17 . 2 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
195108, 194impbida 799 1 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  wss 3947   class class class wbr 5153  dom cdm 5682  ran crn 5683  wf 6550  cfv 6554  (class class class)co 7424  supcsup 9483  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874  +crp 13028  ...cfz 13538  seqcseq 14021  cexp 14081  cli 15486  Σcsu 15690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491  df-sum 15691
This theorem is referenced by:  harmonic  15863  zetacvg  27043
  Copyright terms: Public domain W3C validator