MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcnds Structured version   Visualization version   GIF version

Theorem climcnds 15867
Description: The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcnds (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climcnds
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12895 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12623 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
3 1zzd 12623 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4 nnnn0 12508 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5 climcnds.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6 2nn 12313 . . . . . . . . . . . 12 2 ∈ ℕ
7 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8 nnexpcl 14092 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
96, 7, 8sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
109nnred 12255 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
11 fveq2 6876 . . . . . . . . . . . 12 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
1211eleq1d 2819 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
13 climcnds.1 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
1413ralrimiva 3132 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1514adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1612, 15, 9rspcdva 3602 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
1710, 16remulcld 11265 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
185, 17eqeltrd 2834 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
194, 18sylan2 593 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
201, 3, 19serfre 14049 . . . . . 6 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
2120adantr 480 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺):ℕ⟶ℝ)
22 simpr 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
2322, 1eleqtrdi 2844 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
24 nnz 12609 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2524adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
26 uzid 12867 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
27 peano2uz 12917 . . . . . . . 8 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
2825, 26, 273syl 18 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ (ℤ𝑗))
29 simpl 482 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝜑)
30 elfznn 13570 . . . . . . . 8 (𝑛 ∈ (1...(𝑗 + 1)) → 𝑛 ∈ ℕ)
3129, 30, 19syl2an 596 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑗 + 1))) → (𝐺𝑛) ∈ ℝ)
32 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
33 elfz1eq 13552 . . . . . . . . . 10 (𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑛 = (𝑗 + 1))
3433adantl 481 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 = (𝑗 + 1))
35 nnnn0 12508 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
36 peano2nn0 12541 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
3837ad2antlr 727 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → (𝑗 + 1) ∈ ℕ0)
3934, 38eqeltrd 2834 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 ∈ ℕ0)
409nnnn0d 12562 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ0)
4140nn0ge0d 12565 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (2↑𝑛))
4211breq2d 5131 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(2↑𝑛))))
43 climcnds.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
4443ralrimiva 3132 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4544adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4642, 45, 9rspcdva 3602 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐹‘(2↑𝑛)))
4710, 16, 41, 46mulge0d 11814 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ ((2↑𝑛) · (𝐹‘(2↑𝑛))))
4847, 5breqtrrd 5147 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
4932, 39, 48syl2anc 584 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐺𝑛))
5023, 28, 31, 49sermono 14052 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
5150adantlr 715 . . . . 5 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
52 2re 12314 . . . . . . 7 2 ∈ ℝ
53 eqidd 2736 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5413adantlr 715 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
55 simpr 484 . . . . . . . 8 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
561, 2, 53, 54, 55isumrecl 15781 . . . . . . 7 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
57 remulcl 11214 . . . . . . 7 ((2 ∈ ℝ ∧ Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5852, 56, 57sylancr 587 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5921ffvelcdmda 7074 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
601, 3, 13serfre 14049 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
6160ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
6235adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
63 nnexpcl 14092 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
646, 62, 63sylancr 587 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
6561, 64ffvelcdmd 7075 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
66 remulcl 11214 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6752, 65, 66sylancr 587 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6858adantr 480 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
69 climcnds.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7013, 43, 69, 5climcndslem2 15866 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
7170adantlr 715 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
72 eqidd 2736 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
7364, 1eleqtrdi 2844 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
74 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
75 elfznn 13570 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
7613recnd 11263 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
7774, 75, 76syl2an 596 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
7872, 73, 77fsumser 15746 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
79 1zzd 12623 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
80 fzfid 13991 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
8175ssriv 3962 . . . . . . . . . . . 12 (1...(2↑𝑗)) ⊆ ℕ
8281a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ⊆ ℕ)
83 eqidd 2736 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8413ad4ant14 752 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
8543ad4ant14 752 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
86 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
871, 79, 80, 82, 83, 84, 85, 86isumless 15861 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8878, 87eqbrtrrd 5143 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8956adantr 480 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
90 2rp 13013 . . . . . . . . . . 11 2 ∈ ℝ+
9190a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
9265, 89, 91lemul2d 13095 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘) ↔ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))))
9388, 92mpbid 232 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9459, 67, 68, 71, 93letrd 11392 . . . . . . 7 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9594ralrimiva 3132 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
96 brralrspcev 5179 . . . . . 6 (((2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
9758, 95, 96syl2anc 584 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
981, 2, 21, 51, 97climsup 15686 . . . 4 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ))
99 climrel 15508 . . . . 5 Rel ⇝
10099releldmi 5928 . . . 4 (seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ) → seq1( + , 𝐺) ∈ dom ⇝ )
10198, 100syl 17 . . 3 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ∈ dom ⇝ )
102 nn0uz 12894 . . . . 5 0 = (ℤ‘0)
103 1nn0 12517 . . . . . 6 1 ∈ ℕ0
104103a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10518recnd 11263 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℂ)
106102, 104, 105iserex 15673 . . . 4 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
107106biimpar 477 . . 3 ((𝜑 ∧ seq1( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
108101, 107syldan 591 . 2 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
109 1zzd 12623 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 1 ∈ ℤ)
11060adantr 480 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
111 elfznn 13570 . . . . . . 7 (𝑘 ∈ (1...(𝑗 + 1)) → 𝑘 ∈ ℕ)
11229, 111, 13syl2an 596 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑗 + 1))) → (𝐹𝑘) ∈ ℝ)
113 simpll 766 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
114 peano2nn 12252 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
115114adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
116 elfz1eq 13552 . . . . . . . 8 (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 = (𝑗 + 1))
117 eleq1 2822 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
118117biimparc 479 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 = (𝑗 + 1)) → 𝑘 ∈ ℕ)
119115, 116, 118syl2an 596 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ ℕ)
120113, 119, 43syl2anc 584 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹𝑘))
12123, 28, 112, 120sermono 14052 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
122121adantlr 715 . . . 4 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
123 0zd 12600 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 0 ∈ ℤ)
124 eqidd 2736 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
12518adantlr 715 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
126 simpr 484 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
127102, 123, 124, 125, 126isumrecl 15781 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
128110ffvelcdmda 7074 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ∈ ℝ)
129 0zd 12600 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
130102, 129, 18serfre 14049 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
131130adantr 480 . . . . . . . 8 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺):ℕ0⟶ℝ)
132 ffvelcdm 7071 . . . . . . . 8 ((seq0( + , 𝐺):ℕ0⟶ℝ ∧ 𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
133131, 35, 132syl2an 596 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
134127adantr 480 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
135110adantr 480 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
136 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
13724adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
13837adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
139138nn0red 12563 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℝ)
140 nnexpcl 14092 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
1416, 138, 140sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
142141nnred 12255 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℝ)
143 2z 12624 . . . . . . . . . . . . . . 15 2 ∈ ℤ
144 uzid 12867 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
145143, 144ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
146 bernneq3 14249 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ (𝑗 + 1) ∈ ℕ0) → (𝑗 + 1) < (2↑(𝑗 + 1)))
147145, 138, 146sylancr 587 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) < (2↑(𝑗 + 1)))
148139, 142, 147ltled 11383 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≤ (2↑(𝑗 + 1)))
149137peano2zd 12700 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℤ)
150141nnzd 12615 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
151 eluz 12866 . . . . . . . . . . . . 13 (((𝑗 + 1) ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
152149, 150, 151syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
153148, 152mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)))
154 eluzp1m1 12878 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1))) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
155137, 153, 154syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
156 eluznn 12934 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗)) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
157136, 155, 156syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
158135, 157ffvelcdmd 7075 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ∈ ℝ)
15923adantlr 715 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
160 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
161 elfznn 13570 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
162160, 161, 13syl2an 596 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
163114adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
164 elfzuz 13537 . . . . . . . . . . 11 (𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ‘(𝑗 + 1)))
165 eluznn 12934 . . . . . . . . . . 11 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℕ)
166163, 164, 165syl2an 596 . . . . . . . . . 10 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
167160, 166, 43syl2an2r 685 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 0 ≤ (𝐹𝑘))
168159, 155, 162, 167sermono 14052 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
16935adantl 481 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
17013, 43, 69, 5climcndslem1 15865 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
171160, 169, 170syl2anc 584 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
172128, 158, 133, 168, 171letrd 11392 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq0( + , 𝐺)‘𝑗))
173 eqidd 2736 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) = (𝐺𝑛))
174169, 102eleqtrdi 2844 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘0))
175 elfznn0 13637 . . . . . . . . . 10 (𝑛 ∈ (0...𝑗) → 𝑛 ∈ ℕ0)
176160, 175, 105syl2an 596 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) ∈ ℂ)
177173, 174, 176fsumser 15746 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) = (seq0( + , 𝐺)‘𝑗))
178 0zd 12600 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
179 fzfid 13991 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ∈ Fin)
180175ssriv 3962 . . . . . . . . . 10 (0...𝑗) ⊆ ℕ0
181180a1i 11 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ⊆ ℕ0)
182 eqidd 2736 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
18318ad4ant14 752 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
18448ad4ant14 752 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
185 simplr 768 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
186102, 178, 179, 181, 182, 183, 184, 185isumless 15861 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
187177, 186eqbrtrrd 5143 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
188128, 133, 134, 172, 187letrd 11392 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
189188ralrimiva 3132 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
190 brralrspcev 5179 . . . . 5 ((Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
191127, 189, 190syl2anc 584 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
1921, 109, 110, 122, 191climsup 15686 . . 3 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ))
19399releldmi 5928 . . 3 (seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ) → seq1( + , 𝐹) ∈ dom ⇝ )
194192, 193syl 17 . 2 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
195108, 194impbida 800 1 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  dom cdm 5654  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  +crp 13008  ...cfz 13524  seqcseq 14019  cexp 14079  cli 15500  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703
This theorem is referenced by:  harmonic  15875  zetacvg  26977
  Copyright terms: Public domain W3C validator