Step | Hyp | Ref
| Expression |
1 | | nnuz 12621 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12351 |
. . . . 5
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈
ℤ) |
3 | | 1zzd 12351 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
4 | | nnnn0 12240 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
5 | | climcnds.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
6 | | 2nn 12046 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
7 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
8 | | nnexpcl 13795 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
9 | 6, 7, 8 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℕ) |
10 | 9 | nnred 11988 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℝ) |
11 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2↑𝑛) → (𝐹‘𝑘) = (𝐹‘(2↑𝑛))) |
12 | 11 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = (2↑𝑛) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ)) |
13 | | climcnds.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
14 | 13 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
15 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
16 | 12, 15, 9 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈
ℝ) |
17 | 10, 16 | remulcld 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈
ℝ) |
18 | 5, 17 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ ℝ) |
19 | 4, 18 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℝ) |
20 | 1, 3, 19 | serfre 13752 |
. . . . . 6
⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ) |
21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + ,
𝐺):ℕ⟶ℝ) |
22 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
23 | 22, 1 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
24 | | nnz 12342 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ) |
26 | | uzid 12597 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
27 | | peano2uz 12641 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
29 | | simpl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝜑) |
30 | | elfznn 13285 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...(𝑗 + 1)) → 𝑛 ∈ ℕ) |
31 | 29, 30, 19 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑗 + 1))) → (𝐺‘𝑛) ∈ ℝ) |
32 | | simpll 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑) |
33 | | elfz1eq 13267 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑛 = (𝑗 + 1)) |
34 | 33 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 = (𝑗 + 1)) |
35 | | nnnn0 12240 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
36 | | peano2nn0 12273 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ0) |
38 | 37 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → (𝑗 + 1) ∈
ℕ0) |
39 | 34, 38 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 ∈ ℕ0) |
40 | 9 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℕ0) |
41 | 40 | nn0ge0d 12296 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
(2↑𝑛)) |
42 | 11 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑘 = (2↑𝑛) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(2↑𝑛)))) |
43 | | climcnds.2 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) |
44 | 43 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹‘𝑘)) |
45 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈ ℕ 0
≤ (𝐹‘𝑘)) |
46 | 42, 45, 9 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
(𝐹‘(2↑𝑛))) |
47 | 10, 16, 41, 46 | mulge0d 11552 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
48 | 47, 5 | breqtrrd 5102 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
(𝐺‘𝑛)) |
49 | 32, 39, 48 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐺‘𝑛)) |
50 | 23, 28, 31, 49 | sermono 13755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1))) |
51 | 50 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1))) |
52 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
53 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
54 | 13 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
55 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + ,
𝐹) ∈ dom ⇝
) |
56 | 1, 2, 53, 54, 55 | isumrecl 15477 |
. . . . . . 7
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
57 | | remulcl 10956 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) → (2 ·
Σ𝑘 ∈ ℕ
(𝐹‘𝑘)) ∈ ℝ) |
58 | 52, 56, 57 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (2 ·
Σ𝑘 ∈ ℕ
(𝐹‘𝑘)) ∈ ℝ) |
59 | 21 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐺)‘𝑗) ∈
ℝ) |
60 | 1, 3, 13 | serfre 13752 |
. . . . . . . . . . 11
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ) |
61 | 60 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( +
, 𝐹):ℕ⟶ℝ) |
62 | 35 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
63 | | nnexpcl 13795 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑗
∈ ℕ0) → (2↑𝑗) ∈ ℕ) |
64 | 6, 62, 63 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
ℕ) |
65 | 61, 64 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘(2↑𝑗)) ∈
ℝ) |
66 | | remulcl 10956 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1(
+ , 𝐹)‘(2↑𝑗))) ∈
ℝ) |
67 | 52, 65, 66 | sylancr 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2
· (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ) |
68 | 58 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2
· Σ𝑘 ∈
ℕ (𝐹‘𝑘)) ∈
ℝ) |
69 | | climcnds.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
70 | 13, 43, 69, 5 | climcndslem2 15562 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) |
71 | 70 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐺)‘𝑗) ≤ (2 · (seq1( + ,
𝐹)‘(2↑𝑗)))) |
72 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
73 | 64, 1 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
(ℤ≥‘1)) |
74 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑) |
75 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ) |
76 | 13 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
77 | 74, 75, 76 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹‘𝑘) ∈ ℂ) |
78 | 72, 73, 77 | fsumser 15442 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈
(1...(2↑𝑗))(𝐹‘𝑘) = (seq1( + , 𝐹)‘(2↑𝑗))) |
79 | | 1zzd 12351 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 1 ∈
ℤ) |
80 | | fzfid 13693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(1...(2↑𝑗)) ∈
Fin) |
81 | 75 | ssriv 3925 |
. . . . . . . . . . . 12
⊢
(1...(2↑𝑗))
⊆ ℕ |
82 | 81 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(1...(2↑𝑗)) ⊆
ℕ) |
83 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
84 | 13 | ad4ant14 749 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
85 | 43 | ad4ant14 749 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤
(𝐹‘𝑘)) |
86 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( +
, 𝐹) ∈ dom ⇝
) |
87 | 1, 79, 80, 82, 83, 84, 85, 86 | isumless 15557 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈
(1...(2↑𝑗))(𝐹‘𝑘) ≤ Σ𝑘 ∈ ℕ (𝐹‘𝑘)) |
88 | 78, 87 | eqbrtrrd 5098 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹‘𝑘)) |
89 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
90 | | 2rp 12735 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ+ |
91 | 90 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 2 ∈
ℝ+) |
92 | 65, 89, 91 | lemul2d 12816 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((seq1(
+ , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹‘𝑘) ↔ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 ·
Σ𝑘 ∈ ℕ
(𝐹‘𝑘)))) |
93 | 88, 92 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2
· (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹‘𝑘))) |
94 | 59, 67, 68, 71, 93 | letrd 11132 |
. . . . . . 7
⊢ (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹‘𝑘))) |
95 | 94 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹‘𝑘))) |
96 | | brralrspcev 5134 |
. . . . . 6
⊢ (((2
· Σ𝑘 ∈
ℕ (𝐹‘𝑘)) ∈ ℝ ∧
∀𝑗 ∈ ℕ
(seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹‘𝑘))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥) |
97 | 58, 95, 96 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥) |
98 | 1, 2, 21, 51, 97 | climsup 15381 |
. . . 4
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + ,
𝐺) ⇝ sup(ran seq1( +
, 𝐺), ℝ, <
)) |
99 | | climrel 15201 |
. . . . 5
⊢ Rel
⇝ |
100 | 99 | releldmi 5857 |
. . . 4
⊢ (seq1( +
, 𝐺) ⇝ sup(ran seq1(
+ , 𝐺), ℝ, < )
→ seq1( + , 𝐺) ∈
dom ⇝ ) |
101 | 98, 100 | syl 17 |
. . 3
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + ,
𝐺) ∈ dom ⇝
) |
102 | | nn0uz 12620 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
103 | | 1nn0 12249 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
104 | 103 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
105 | 18 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ ℂ) |
106 | 102, 104,
105 | iserex 15368 |
. . . 4
⊢ (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq1( + , 𝐺) ∈ dom
⇝ )) |
107 | 106 | biimpar 478 |
. . 3
⊢ ((𝜑 ∧ seq1( + , 𝐺) ∈ dom ⇝ ) → seq0( + ,
𝐺) ∈ dom ⇝
) |
108 | 101, 107 | syldan 591 |
. 2
⊢ ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq0( + ,
𝐺) ∈ dom ⇝
) |
109 | | 1zzd 12351 |
. . . 4
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 1 ∈
ℤ) |
110 | 60 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + ,
𝐹):ℕ⟶ℝ) |
111 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑘 ∈ (1...(𝑗 + 1)) → 𝑘 ∈ ℕ) |
112 | 29, 111, 13 | syl2an 596 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℝ) |
113 | | simpll 764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑) |
114 | | peano2nn 11985 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
115 | 114 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) |
116 | | elfz1eq 13267 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 = (𝑗 + 1)) |
117 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ)) |
118 | 117 | biimparc 480 |
. . . . . . . 8
⊢ (((𝑗 + 1) ∈ ℕ ∧ 𝑘 = (𝑗 + 1)) → 𝑘 ∈ ℕ) |
119 | 115, 116,
118 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ ℕ) |
120 | 113, 119,
43 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹‘𝑘)) |
121 | 23, 28, 112, 120 | sermono 13755 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1))) |
122 | 121 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1))) |
123 | | 0zd 12331 |
. . . . . 6
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 0 ∈
ℤ) |
124 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0)
→ (𝐺‘𝑛) = (𝐺‘𝑛)) |
125 | 18 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0)
→ (𝐺‘𝑛) ∈
ℝ) |
126 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + ,
𝐺) ∈ dom ⇝
) |
127 | 102, 123,
124, 125, 126 | isumrecl 15477 |
. . . . 5
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → Σ𝑛 ∈ ℕ0
(𝐺‘𝑛) ∈ ℝ) |
128 | 110 | ffvelrnda 6961 |
. . . . . . 7
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) ∈
ℝ) |
129 | | 0zd 12331 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
130 | 102, 129,
18 | serfre 13752 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ) |
131 | 130 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + ,
𝐺):ℕ0⟶ℝ) |
132 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((seq0( +
, 𝐺):ℕ0⟶ℝ ∧
𝑗 ∈
ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ) |
133 | 131, 35, 132 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( +
, 𝐺)‘𝑗) ∈
ℝ) |
134 | 127 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈
ℕ0 (𝐺‘𝑛) ∈ ℝ) |
135 | 110 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( +
, 𝐹):ℕ⟶ℝ) |
136 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
137 | 24 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
138 | 37 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℕ0) |
139 | 138 | nn0red 12294 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℝ) |
140 | | nnexpcl 13795 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
141 | 6, 138, 140 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑(𝑗 + 1)) ∈
ℕ) |
142 | 141 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑(𝑗 + 1)) ∈
ℝ) |
143 | | 2z 12352 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
144 | | uzid 12597 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
145 | 143, 144 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘2) |
146 | | bernneq3 13946 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝑗 + 1) ∈ ℕ0) →
(𝑗 + 1) < (2↑(𝑗 + 1))) |
147 | 145, 138,
146 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) < (2↑(𝑗 + 1))) |
148 | 139, 142,
147 | ltled 11123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≤ (2↑(𝑗 + 1))) |
149 | 137 | peano2zd 12429 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℤ) |
150 | 141 | nnzd 12425 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑(𝑗 + 1)) ∈
ℤ) |
151 | | eluz 12596 |
. . . . . . . . . . . . 13
⊢ (((𝑗 + 1) ∈ ℤ ∧
(2↑(𝑗 + 1)) ∈
ℤ) → ((2↑(𝑗
+ 1)) ∈ (ℤ≥‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1)))) |
152 | 149, 150,
151 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
((2↑(𝑗 + 1)) ∈
(ℤ≥‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1)))) |
153 | 148, 152 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(2↑(𝑗 + 1)) ∈
(ℤ≥‘(𝑗 + 1))) |
154 | | eluzp1m1 12608 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧
(2↑(𝑗 + 1)) ∈
(ℤ≥‘(𝑗 + 1))) → ((2↑(𝑗 + 1)) − 1) ∈
(ℤ≥‘𝑗)) |
155 | 137, 153,
154 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘𝑗)) |
156 | | eluznn 12658 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘𝑗)) → ((2↑(𝑗 + 1)) − 1) ∈
ℕ) |
157 | 136, 155,
156 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
((2↑(𝑗 + 1)) −
1) ∈ ℕ) |
158 | 135, 157 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ∈
ℝ) |
159 | 23 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
160 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑) |
161 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈
ℕ) |
162 | 160, 161,
13 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℝ) |
163 | 114 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℕ) |
164 | | elfzuz 13252 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) |
165 | | eluznn 12658 |
. . . . . . . . . . 11
⊢ (((𝑗 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ ℕ) |
166 | 163, 164,
165 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ) |
167 | 160, 166,
43 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 0 ≤ (𝐹‘𝑘)) |
168 | 159, 155,
162, 167 | sermono 13755 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) −
1))) |
169 | 35 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
170 | 13, 43, 69, 5 | climcndslem1 15561 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗)) |
171 | 160, 169,
170 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗)) |
172 | 128, 158,
133, 168, 171 | letrd 11132 |
. . . . . . 7
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) ≤ (seq0( + , 𝐺)‘𝑗)) |
173 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺‘𝑛) = (𝐺‘𝑛)) |
174 | 169, 102 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘0)) |
175 | | elfznn0 13349 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑗) → 𝑛 ∈ ℕ0) |
176 | 160, 175,
105 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺‘𝑛) ∈ ℂ) |
177 | 173, 174,
176 | fsumser 15442 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (0...𝑗)(𝐺‘𝑛) = (seq0( + , 𝐺)‘𝑗)) |
178 | | 0zd 12331 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ∈
ℤ) |
179 | | fzfid 13693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(0...𝑗) ∈
Fin) |
180 | 175 | ssriv 3925 |
. . . . . . . . . 10
⊢
(0...𝑗) ⊆
ℕ0 |
181 | 180 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
(0...𝑗) ⊆
ℕ0) |
182 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0)
→ (𝐺‘𝑛) = (𝐺‘𝑛)) |
183 | 18 | ad4ant14 749 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0)
→ (𝐺‘𝑛) ∈
ℝ) |
184 | 48 | ad4ant14 749 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0)
→ 0 ≤ (𝐺‘𝑛)) |
185 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq0( +
, 𝐺) ∈ dom ⇝
) |
186 | 102, 178,
179, 181, 182, 183, 184, 185 | isumless 15557 |
. . . . . . . 8
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (0...𝑗)(𝐺‘𝑛) ≤ Σ𝑛 ∈ ℕ0 (𝐺‘𝑛)) |
187 | 177, 186 | eqbrtrrd 5098 |
. . . . . . 7
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( +
, 𝐺)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺‘𝑛)) |
188 | 128, 133,
134, 172, 187 | letrd 11132 |
. . . . . 6
⊢ (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺‘𝑛)) |
189 | 188 | ralrimiva 3103 |
. . . . 5
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺‘𝑛)) |
190 | | brralrspcev 5134 |
. . . . 5
⊢
((Σ𝑛 ∈
ℕ0 (𝐺‘𝑛) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺‘𝑛)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥) |
191 | 127, 189,
190 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥) |
192 | 1, 109, 110, 122, 191 | climsup 15381 |
. . 3
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + ,
𝐹) ⇝ sup(ran seq1( +
, 𝐹), ℝ, <
)) |
193 | 99 | releldmi 5857 |
. . 3
⊢ (seq1( +
, 𝐹) ⇝ sup(ran seq1(
+ , 𝐹), ℝ, < )
→ seq1( + , 𝐹) ∈
dom ⇝ ) |
194 | 192, 193 | syl 17 |
. 2
⊢ ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + ,
𝐹) ∈ dom ⇝
) |
195 | 108, 194 | impbida 798 |
1
⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔
seq0( + , 𝐺) ∈ dom
⇝ )) |