MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcnds Structured version   Visualization version   GIF version

Theorem climcnds 15267
Description: The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcnds (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climcnds
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12334 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12065 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
3 1zzd 12065 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4 nnnn0 11954 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5 climcnds.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6 2nn 11760 . . . . . . . . . . . 12 2 ∈ ℕ
7 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8 nnexpcl 13505 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
96, 7, 8sylancr 590 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
109nnred 11702 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
11 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
1211eleq1d 2836 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
13 climcnds.1 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
1413ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1514adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
1612, 15, 9rspcdva 3545 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
1710, 16remulcld 10722 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
185, 17eqeltrd 2852 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
194, 18sylan2 595 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
201, 3, 19serfre 13462 . . . . . 6 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
2120adantr 484 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺):ℕ⟶ℝ)
22 simpr 488 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
2322, 1eleqtrdi 2862 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
24 nnz 12056 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2524adantl 485 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
26 uzid 12310 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
27 peano2uz 12354 . . . . . . . 8 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
2825, 26, 273syl 18 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ (ℤ𝑗))
29 simpl 486 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝜑)
30 elfznn 12998 . . . . . . . 8 (𝑛 ∈ (1...(𝑗 + 1)) → 𝑛 ∈ ℕ)
3129, 30, 19syl2an 598 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑗 + 1))) → (𝐺𝑛) ∈ ℝ)
32 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
33 elfz1eq 12980 . . . . . . . . . 10 (𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑛 = (𝑗 + 1))
3433adantl 485 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 = (𝑗 + 1))
35 nnnn0 11954 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
36 peano2nn0 11987 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
3837ad2antlr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → (𝑗 + 1) ∈ ℕ0)
3934, 38eqeltrd 2852 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑛 ∈ ℕ0)
409nnnn0d 12007 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ0)
4140nn0ge0d 12010 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (2↑𝑛))
4211breq2d 5048 . . . . . . . . . . 11 (𝑘 = (2↑𝑛) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(2↑𝑛))))
43 climcnds.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
4443ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4544adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
4642, 45, 9rspcdva 3545 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐹‘(2↑𝑛)))
4710, 16, 41, 46mulge0d 11268 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ ((2↑𝑛) · (𝐹‘(2↑𝑛))))
4847, 5breqtrrd 5064 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
4932, 39, 48syl2anc 587 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐺𝑛))
5023, 28, 31, 49sermono 13465 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
5150adantlr 714 . . . . 5 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (seq1( + , 𝐺)‘(𝑗 + 1)))
52 2re 11761 . . . . . . 7 2 ∈ ℝ
53 eqidd 2759 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5413adantlr 714 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
55 simpr 488 . . . . . . . 8 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
561, 2, 53, 54, 55isumrecl 15181 . . . . . . 7 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
57 remulcl 10673 . . . . . . 7 ((2 ∈ ℝ ∧ Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5852, 56, 57sylancr 590 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
5921ffvelrnda 6848 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
601, 3, 13serfre 13462 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
6160ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
6235adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
63 nnexpcl 13505 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
646, 62, 63sylancr 590 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
6561, 64ffvelrnd 6849 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
66 remulcl 10673 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6752, 65, 66sylancr 590 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
6858adantr 484 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ)
69 climcnds.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7013, 43, 69, 5climcndslem2 15266 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
7170adantlr 714 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
72 eqidd 2759 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
7364, 1eleqtrdi 2862 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
74 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
75 elfznn 12998 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
7613recnd 10720 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
7774, 75, 76syl2an 598 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
7872, 73, 77fsumser 15148 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
79 1zzd 12065 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
80 fzfid 13403 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
8175ssriv 3898 . . . . . . . . . . . 12 (1...(2↑𝑗)) ⊆ ℕ
8281a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ⊆ ℕ)
83 eqidd 2759 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8413ad4ant14 751 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
8543ad4ant14 751 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
86 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
871, 79, 80, 82, 83, 84, 85, 86isumless 15261 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8878, 87eqbrtrrd 5060 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘))
8956adantr 484 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
90 2rp 12448 . . . . . . . . . . 11 2 ∈ ℝ+
9190a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
9265, 89, 91lemul2d 12529 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐹)‘(2↑𝑗)) ≤ Σ𝑘 ∈ ℕ (𝐹𝑘) ↔ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))))
9388, 92mpbid 235 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9459, 67, 68, 71, 93letrd 10848 . . . . . . 7 (((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
9594ralrimiva 3113 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘)))
96 brralrspcev 5096 . . . . . 6 (((2 · Σ𝑘 ∈ ℕ (𝐹𝑘)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ (2 · Σ𝑘 ∈ ℕ (𝐹𝑘))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
9758, 95, 96syl2anc 587 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐺)‘𝑗) ≤ 𝑥)
981, 2, 21, 51, 97climsup 15087 . . . 4 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ))
99 climrel 14910 . . . . 5 Rel ⇝
10099releldmi 5794 . . . 4 (seq1( + , 𝐺) ⇝ sup(ran seq1( + , 𝐺), ℝ, < ) → seq1( + , 𝐺) ∈ dom ⇝ )
10198, 100syl 17 . . 3 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐺) ∈ dom ⇝ )
102 nn0uz 12333 . . . . 5 0 = (ℤ‘0)
103 1nn0 11963 . . . . . 6 1 ∈ ℕ0
104103a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10518recnd 10720 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℂ)
106102, 104, 105iserex 15074 . . . 4 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
107106biimpar 481 . . 3 ((𝜑 ∧ seq1( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
108101, 107syldan 594 . 2 ((𝜑 ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
109 1zzd 12065 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 1 ∈ ℤ)
11060adantr 484 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
111 elfznn 12998 . . . . . . 7 (𝑘 ∈ (1...(𝑗 + 1)) → 𝑘 ∈ ℕ)
11229, 111, 13syl2an 598 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑗 + 1))) → (𝐹𝑘) ∈ ℝ)
113 simpll 766 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝜑)
114 peano2nn 11699 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
115114adantl 485 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
116 elfz1eq 12980 . . . . . . . 8 (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 = (𝑗 + 1))
117 eleq1 2839 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
118117biimparc 483 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 = (𝑗 + 1)) → 𝑘 ∈ ℕ)
119115, 116, 118syl2an 598 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ ℕ)
120113, 119, 43syl2anc 587 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹𝑘))
12123, 28, 112, 120sermono 13465 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
122121adantlr 714 . . . 4 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘(𝑗 + 1)))
123 0zd 12045 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → 0 ∈ ℤ)
124 eqidd 2759 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
12518adantlr 714 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
126 simpr 488 . . . . . 6 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺) ∈ dom ⇝ )
127102, 123, 124, 125, 126isumrecl 15181 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
128110ffvelrnda 6848 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ∈ ℝ)
129 0zd 12045 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
130102, 129, 18serfre 13462 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
131130adantr 484 . . . . . . . 8 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq0( + , 𝐺):ℕ0⟶ℝ)
132 ffvelrn 6846 . . . . . . . 8 ((seq0( + , 𝐺):ℕ0⟶ℝ ∧ 𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
133131, 35, 132syl2an 598 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
134127adantr 484 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ)
135110adantr 484 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq1( + , 𝐹):ℕ⟶ℝ)
136 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
13724adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
13837adantl 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
139138nn0red 12008 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℝ)
140 nnexpcl 13505 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
1416, 138, 140sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
142141nnred 11702 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℝ)
143 2z 12066 . . . . . . . . . . . . . . 15 2 ∈ ℤ
144 uzid 12310 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
145143, 144ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
146 bernneq3 13655 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ (𝑗 + 1) ∈ ℕ0) → (𝑗 + 1) < (2↑(𝑗 + 1)))
147145, 138, 146sylancr 590 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) < (2↑(𝑗 + 1)))
148139, 142, 147ltled 10839 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≤ (2↑(𝑗 + 1)))
149137peano2zd 12142 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℤ)
150141nnzd 12138 . . . . . . . . . . . . 13 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
151 eluz 12309 . . . . . . . . . . . . 13 (((𝑗 + 1) ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
152149, 150, 151syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)) ↔ (𝑗 + 1) ≤ (2↑(𝑗 + 1))))
153148, 152mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1)))
154 eluzp1m1 12321 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ (2↑(𝑗 + 1)) ∈ (ℤ‘(𝑗 + 1))) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
155137, 153, 154syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗))
156 eluznn 12371 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ𝑗)) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
157136, 155, 156syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
158135, 157ffvelrnd 6849 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ∈ ℝ)
15923adantlr 714 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
160 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝜑)
161 elfznn 12998 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
162160, 161, 13syl2an 598 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
163114adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
164 elfzuz 12965 . . . . . . . . . . 11 (𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ‘(𝑗 + 1)))
165 eluznn 12371 . . . . . . . . . . 11 (((𝑗 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℕ)
166163, 164, 165syl2an 598 . . . . . . . . . 10 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
167160, 166, 43syl2an2r 684 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ((𝑗 + 1)...((2↑(𝑗 + 1)) − 1))) → 0 ≤ (𝐹𝑘))
168159, 155, 162, 167sermono 13465 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
16935adantl 485 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
17013, 43, 69, 5climcndslem1 15265 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
171160, 169, 170syl2anc 587 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))
172128, 158, 133, 168, 171letrd 10848 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ (seq0( + , 𝐺)‘𝑗))
173 eqidd 2759 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) = (𝐺𝑛))
174169, 102eleqtrdi 2862 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘0))
175 elfznn0 13062 . . . . . . . . . 10 (𝑛 ∈ (0...𝑗) → 𝑛 ∈ ℕ0)
176160, 175, 105syl2an 598 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑗)) → (𝐺𝑛) ∈ ℂ)
177173, 174, 176fsumser 15148 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) = (seq0( + , 𝐺)‘𝑗))
178 0zd 12045 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
179 fzfid 13403 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ∈ Fin)
180175ssriv 3898 . . . . . . . . . 10 (0...𝑗) ⊆ ℕ0
181180a1i 11 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (0...𝑗) ⊆ ℕ0)
182 eqidd 2759 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝐺𝑛))
18318ad4ant14 751 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
18448ad4ant14 751 . . . . . . . . 9 ((((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → 0 ≤ (𝐺𝑛))
185 simplr 768 . . . . . . . . 9 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
186102, 178, 179, 181, 182, 183, 184, 185isumless 15261 . . . . . . . 8 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (0...𝑗)(𝐺𝑛) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
187177, 186eqbrtrrd 5060 . . . . . . 7 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq0( + , 𝐺)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
188128, 133, 134, 172, 187letrd 10848 . . . . . 6 (((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
189188ralrimiva 3113 . . . . 5 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛))
190 brralrspcev 5096 . . . . 5 ((Σ𝑛 ∈ ℕ0 (𝐺𝑛) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ Σ𝑛 ∈ ℕ0 (𝐺𝑛)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
191127, 189, 190syl2anc 587 . . . 4 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (seq1( + , 𝐹)‘𝑗) ≤ 𝑥)
1921, 109, 110, 122, 191climsup 15087 . . 3 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ))
19399releldmi 5794 . . 3 (seq1( + , 𝐹) ⇝ sup(ran seq1( + , 𝐹), ℝ, < ) → seq1( + , 𝐹) ∈ dom ⇝ )
194192, 193syl 17 . 2 ((𝜑 ∧ seq0( + , 𝐺) ∈ dom ⇝ ) → seq1( + , 𝐹) ∈ dom ⇝ )
195108, 194impbida 800 1 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  wss 3860   class class class wbr 5036  dom cdm 5528  ran crn 5529  wf 6336  cfv 6340  (class class class)co 7156  supcsup 8950  cc 10586  cr 10587  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593   < clt 10726  cle 10727  cmin 10921  cn 11687  2c2 11742  0cn0 11947  cz 12033  cuz 12295  +crp 12443  ...cfz 12952  seqcseq 13431  cexp 13492  cli 14902  Σcsu 15103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-oi 9020  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-ico 12798  df-fz 12953  df-fzo 13096  df-fl 13224  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-rlim 14907  df-sum 15104
This theorem is referenced by:  harmonic  15275  zetacvg  25712
  Copyright terms: Public domain W3C validator