Step | Hyp | Ref
| Expression |
1 | | sseq1 3946 |
. . . 4
⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛))) |
2 | 1 | rexbidv 3226 |
. . 3
⊢ (𝐴 = ∅ → (∃𝑛 ∈
(ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ≥‘𝑀)∅ ⊆ (𝑀...𝑛))) |
3 | | fsumcvg3.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝑍) |
5 | | fsumcvg3.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | 4, 5 | sseqtrdi 3971 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
7 | | ltso 11055 |
. . . . . 6
⊢ < Or
ℝ |
8 | | fsumcvg3.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
10 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) |
11 | | uzssz 12603 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
12 | | zssre 12326 |
. . . . . . . . . 10
⊢ ℤ
⊆ ℝ |
13 | 11, 12 | sstri 3930 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
14 | 5, 13 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℝ |
15 | 4, 14 | sstrdi 3933 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℝ) |
16 | 9, 10, 15 | 3jca 1127 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) |
17 | | fisupcl 9228 |
. . . . . 6
⊢ (( <
Or ℝ ∧ (𝐴 ∈
Fin ∧ 𝐴 ≠ ∅
∧ 𝐴 ⊆ ℝ))
→ sup(𝐴, ℝ, <
) ∈ 𝐴) |
18 | 7, 16, 17 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
19 | 6, 18 | sseldd 3922 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈
(ℤ≥‘𝑀)) |
20 | | fimaxre2 11920 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛 ∈ 𝐴 𝑛 ≤ 𝑘) |
21 | 15, 9, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛 ∈ 𝐴 𝑛 ≤ 𝑘) |
22 | 15, 10, 21 | 3jca 1127 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛 ∈ 𝐴 𝑛 ≤ 𝑘)) |
23 | | suprub 11936 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛 ∈ 𝐴 𝑛 ≤ 𝑘) ∧ 𝑘 ∈ 𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < )) |
24 | 22, 23 | sylan 580 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < )) |
25 | 6 | sselda 3921 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (ℤ≥‘𝑀)) |
26 | 11, 19 | sselid 3919 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈
ℤ) |
27 | 26 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈
ℤ) |
28 | | elfz5 13248 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) →
(𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < ))) |
29 | 25, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < ))) |
30 | 24, 29 | mpbird 256 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
31 | 30 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))) |
32 | 31 | ssrdv 3927 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
33 | | oveq2 7283 |
. . . . . 6
⊢ (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < ))) |
34 | 33 | sseq2d 3953 |
. . . . 5
⊢ (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))) |
35 | 34 | rspcev 3561 |
. . . 4
⊢
((sup(𝐴, ℝ,
< ) ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈
(ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
36 | 19, 32, 35 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈
(ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
37 | | fsumcvg3.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
38 | | uzid 12597 |
. . . . 5
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
40 | | 0ss 4330 |
. . . 4
⊢ ∅
⊆ (𝑀...𝑀) |
41 | | oveq2 7283 |
. . . . . 6
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
42 | 41 | sseq2d 3953 |
. . . . 5
⊢ (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀))) |
43 | 42 | rspcev 3561 |
. . . 4
⊢ ((𝑀 ∈
(ℤ≥‘𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ≥‘𝑀)∅ ⊆ (𝑀...𝑛)) |
44 | 39, 40, 43 | sylancl 586 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)∅ ⊆ (𝑀...𝑛)) |
45 | 2, 36, 44 | pm2.61ne 3030 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
46 | 5 | eleq2i 2830 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
47 | | fsumcvg3.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
48 | 46, 47 | sylan2br 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
49 | 48 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
50 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
51 | | fsumcvg3.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
52 | 51 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
53 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛)) |
54 | 49, 50, 52, 53 | fsumcvg2 15439 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛)) |
55 | | climrel 15201 |
. . . 4
⊢ Rel
⇝ |
56 | 55 | releldmi 5857 |
. . 3
⊢ (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
57 | 54, 56 | syl 17 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
58 | 45, 57 | rexlimddv 3220 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |