MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg3 Structured version   Visualization version   GIF version

Theorem fsumcvg3 15077
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsumcvg3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3967 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛)))
21rexbidv 3283 . . 3 (𝐴 = ∅ → (∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛)))
3 fsumcvg3.4 . . . . . . 7 (𝜑𝐴𝑍)
43adantr 484 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑍)
5 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
64, 5sseqtrdi 3992 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ𝑀))
7 ltso 10710 . . . . . 6 < Or ℝ
8 fsumcvg3.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
98adantr 484 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
10 simpr 488 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
11 uzssz 12252 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
12 zssre 11976 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3951 . . . . . . . . 9 (ℤ𝑀) ⊆ ℝ
145, 13eqsstri 3976 . . . . . . . 8 𝑍 ⊆ ℝ
154, 14sstrdi 3954 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
169, 10, 153jca 1125 . . . . . 6 ((𝜑𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ))
17 fisupcl 8921 . . . . . 6 (( < Or ℝ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
187, 16, 17sylancr 590 . . . . 5 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3943 . . . 4 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ (ℤ𝑀))
20 fimaxre2 11574 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2115, 9, 20syl2anc 587 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2215, 10, 213jca 1125 . . . . . . . 8 ((𝜑𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘))
23 suprub 11589 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
2422, 23sylan 583 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
256sselda 3942 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
2611, 19sseldi 3940 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
2726adantr 484 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
28 elfz5 12894 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
2925, 27, 28syl2anc 587 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
3024, 29mpbird 260 . . . . . 6 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3130ex 416 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3231ssrdv 3948 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
33 oveq2 7148 . . . . . 6 (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < )))
3433sseq2d 3974 . . . . 5 (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
3534rspcev 3598 . . . 4 ((sup(𝐴, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
3619, 32, 35syl2anc 587 . . 3 ((𝜑𝐴 ≠ ∅) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
37 fsumcvg3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
38 uzid 12246 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3937, 38syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
40 0ss 4322 . . . 4 ∅ ⊆ (𝑀...𝑀)
41 oveq2 7148 . . . . . 6 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
4241sseq2d 3974 . . . . 5 (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀)))
4342rspcev 3598 . . . 4 ((𝑀 ∈ (ℤ𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
4439, 40, 43sylancl 589 . . 3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
452, 36, 44pm2.61ne 3096 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
465eleq2i 2905 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
47 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4846, 47sylan2br 597 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948adantlr 714 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
50 simprl 770 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
51 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5251adantlr 714 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
53 simprr 772 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
5449, 50, 52, 53fsumcvg2 15075 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
55 climrel 14840 . . . 4 Rel ⇝
5655releldmi 5795 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5754, 56syl 17 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5845, 57rexlimddv 3277 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  wss 3908  c0 4265  ifcif 4439   class class class wbr 5042   Or wor 5450  dom cdm 5532  cfv 6334  (class class class)co 7140  Fincfn 8496  supcsup 8892  cc 10524  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836
This theorem is referenced by:  isumless  15191  radcnv0  25009  fsumcvg4  31267
  Copyright terms: Public domain W3C validator