MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg3 Structured version   Visualization version   GIF version

Theorem fsumcvg3 15671
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsumcvg3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sseq1 4006 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛)))
21rexbidv 3178 . . 3 (𝐴 = ∅ → (∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛)))
3 fsumcvg3.4 . . . . . . 7 (𝜑𝐴𝑍)
43adantr 481 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑍)
5 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
64, 5sseqtrdi 4031 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ𝑀))
7 ltso 11290 . . . . . 6 < Or ℝ
8 fsumcvg3.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
98adantr 481 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
10 simpr 485 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
11 uzssz 12839 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
12 zssre 12561 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3990 . . . . . . . . 9 (ℤ𝑀) ⊆ ℝ
145, 13eqsstri 4015 . . . . . . . 8 𝑍 ⊆ ℝ
154, 14sstrdi 3993 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
169, 10, 153jca 1128 . . . . . 6 ((𝜑𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ))
17 fisupcl 9460 . . . . . 6 (( < Or ℝ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
187, 16, 17sylancr 587 . . . . 5 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3982 . . . 4 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ (ℤ𝑀))
20 fimaxre2 12155 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2115, 9, 20syl2anc 584 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2215, 10, 213jca 1128 . . . . . . . 8 ((𝜑𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘))
23 suprub 12171 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
2422, 23sylan 580 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
256sselda 3981 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
2611, 19sselid 3979 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
2726adantr 481 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
28 elfz5 13489 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
2925, 27, 28syl2anc 584 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
3024, 29mpbird 256 . . . . . 6 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3130ex 413 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3231ssrdv 3987 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
33 oveq2 7413 . . . . . 6 (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < )))
3433sseq2d 4013 . . . . 5 (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
3534rspcev 3612 . . . 4 ((sup(𝐴, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
3619, 32, 35syl2anc 584 . . 3 ((𝜑𝐴 ≠ ∅) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
37 fsumcvg3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
38 uzid 12833 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3937, 38syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
40 0ss 4395 . . . 4 ∅ ⊆ (𝑀...𝑀)
41 oveq2 7413 . . . . . 6 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
4241sseq2d 4013 . . . . 5 (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀)))
4342rspcev 3612 . . . 4 ((𝑀 ∈ (ℤ𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
4439, 40, 43sylancl 586 . . 3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
452, 36, 44pm2.61ne 3027 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
465eleq2i 2825 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
47 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4846, 47sylan2br 595 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948adantlr 713 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
50 simprl 769 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
51 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5251adantlr 713 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
53 simprr 771 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
5449, 50, 52, 53fsumcvg2 15669 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
55 climrel 15432 . . . 4 Rel ⇝
5655releldmi 5945 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5754, 56syl 17 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5845, 57rexlimddv 3161 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321  ifcif 4527   class class class wbr 5147   Or wor 5586  dom cdm 5675  cfv 6540  (class class class)co 7405  Fincfn 8935  supcsup 9431  cc 11104  cr 11105  0cc0 11106   + caddc 11109   < clt 11244  cle 11245  cz 12554  cuz 12818  ...cfz 13480  seqcseq 13962  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  isumless  15787  radcnv0  25919  fsumcvg4  32918
  Copyright terms: Public domain W3C validator