Step | Hyp | Ref
| Expression |
1 | | cvgcmpce.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | cvgcmpce.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
3 | 2, 1 | eleqtrdi 2849 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | eluzel2 12516 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | | cvgcmpce.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
7 | 1, 5, 6 | serf 13679 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
8 | 7 | ffvelrnda 6943 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
9 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
10 | 9 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝐶 · (𝐹‘𝑚)) = (𝐶 · (𝐹‘𝑘))) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚))) |
12 | | ovex 7288 |
. . . . . . . 8
⊢ (𝐶 · (𝐹‘𝑘)) ∈ V |
13 | 10, 11, 12 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
14 | 13 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
15 | | cvgcmpce.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℝ) |
17 | | cvgcmpce.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
18 | 16, 17 | remulcld 10936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐶 · (𝐹‘𝑘)) ∈ ℝ) |
19 | 14, 18 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))‘𝑘) ∈ ℝ) |
20 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (abs‘(𝐺‘𝑚)) = (abs‘(𝐺‘𝑘))) |
21 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))) |
22 | | fvex 6769 |
. . . . . . . 8
⊢
(abs‘(𝐺‘𝑘)) ∈ V |
23 | 20, 21, 22 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) = (abs‘(𝐺‘𝑘))) |
24 | 23 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) = (abs‘(𝐺‘𝑘))) |
25 | 6 | abscld 15076 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐺‘𝑘)) ∈ ℝ) |
26 | 24, 25 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) ∈ ℝ) |
27 | 15 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
28 | | cvgcmpce.5 |
. . . . . . . 8
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
29 | | climdm 15191 |
. . . . . . . 8
⊢ (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
30 | 28, 29 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
31 | 17 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
32 | 1, 5, 27, 30, 31, 14 | isermulc2 15297 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹)))) |
33 | | climrel 15129 |
. . . . . . 7
⊢ Rel
⇝ |
34 | 33 | releldmi 5846 |
. . . . . 6
⊢ (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))) → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))) ∈ dom ⇝ ) |
35 | 32, 34 | syl 17 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))) ∈ dom ⇝ ) |
36 | 1 | uztrn2 12530 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
37 | 2, 36 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
38 | 6 | absge0d 15084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (abs‘(𝐺‘𝑘))) |
39 | 38, 24 | breqtrrd 5098 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘)) |
40 | 37, 39 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘)) |
41 | | cvgcmpce.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (abs‘(𝐺‘𝑘)) ≤ (𝐶 · (𝐹‘𝑘))) |
42 | 37, 23 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) = (abs‘(𝐺‘𝑘))) |
43 | 37, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
44 | 41, 42, 43 | 3brtr4d 5102 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) ≤ ((𝑚 ∈ 𝑍 ↦ (𝐶 · (𝐹‘𝑚)))‘𝑘)) |
45 | 1, 2, 19, 26, 35, 40, 44 | cvgcmp 15456 |
. . . 4
⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))) ∈ dom ⇝ ) |
46 | 1 | climcau 15310 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))) ∈ dom ⇝ ) →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥) |
47 | 5, 45, 46 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥) |
48 | 1, 5, 26 | serfre 13680 |
. . . . . . . . . . . . 13
⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))):𝑍⟶ℝ) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))):𝑍⟶ℝ) |
50 | 1 | uztrn2 12530 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) |
51 | 50 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ 𝑍) |
52 | 49, 51 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) ∈ ℝ) |
53 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ 𝑍) |
54 | 49, 53 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗) ∈ ℝ) |
55 | 52, 54 | resubcld 11333 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) ∈ ℝ) |
56 | | 0red 10909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ∈
ℝ) |
57 | 7 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
58 | 57, 51 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
59 | 57, 53 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
60 | 58, 59 | subcld 11262 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) ∈ ℂ) |
61 | 60 | abscld 15076 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ) |
62 | 60 | absge0d 15084 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤
(abs‘((seq𝑀( + ,
𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)))) |
63 | | fzfid 13621 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑀...𝑛) ∈ Fin) |
64 | | difss 4062 |
. . . . . . . . . . . . . 14
⊢ ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛) |
65 | | ssfi 8918 |
. . . . . . . . . . . . . 14
⊢ (((𝑀...𝑛) ∈ Fin ∧ ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin) |
66 | 63, 64, 65 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin) |
67 | | eldifi 4057 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗)) → 𝑘 ∈ (𝑀...𝑛)) |
68 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝜑) |
69 | | elfzuz 13181 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
70 | 69, 1 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
71 | 68, 70, 6 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) ∈ ℂ) |
72 | 67, 71 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (𝐺‘𝑘) ∈ ℂ) |
73 | 66, 72 | fsumabs 15441 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
(abs‘Σ𝑘 ∈
((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘)) ≤ Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺‘𝑘))) |
74 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
75 | 51, 1 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
76 | 74, 75, 71 | fsumser 15370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺‘𝑘) = (seq𝑀( + , 𝐺)‘𝑛)) |
77 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
78 | 53, 1 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ (ℤ≥‘𝑀)) |
79 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) |
80 | 79, 1 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
81 | 68, 80, 6 | syl2an 595 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) ∈ ℂ) |
82 | 77, 78, 81 | fsumser 15370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺‘𝑘) = (seq𝑀( + , 𝐺)‘𝑗)) |
83 | 76, 82 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺‘𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺‘𝑘)) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) |
84 | | fzfid 13621 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑀...𝑗) ∈ Fin) |
85 | 84, 81 | fsumcl 15373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺‘𝑘) ∈ ℂ) |
86 | 66, 72 | fsumcl 15373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘) ∈ ℂ) |
87 | | disjdif 4402 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅ |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅) |
89 | | undif2 4407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ((𝑀...𝑗) ∪ (𝑀...𝑛)) |
90 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → (𝑀...𝑗) ⊆ (𝑀...𝑛)) |
91 | 90 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑀...𝑗) ⊆ (𝑀...𝑛)) |
92 | | ssequn1 4110 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀...𝑗) ⊆ (𝑀...𝑛) ↔ ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛)) |
93 | 91, 92 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛)) |
94 | 89, 93 | eqtr2id 2792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑀...𝑛) = ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗)))) |
95 | 88, 94, 63, 71 | fsumsplit 15381 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺‘𝑘) = (Σ𝑘 ∈ (𝑀...𝑗)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘))) |
96 | 85, 86, 95 | mvrladdd 11318 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺‘𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘)) |
97 | 83, 96 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘)) |
98 | 97 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺‘𝑘))) |
99 | 70 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ 𝑍) |
100 | 99, 23 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) = (abs‘(𝐺‘𝑘))) |
101 | | abscl 14918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑘) ∈ ℂ → (abs‘(𝐺‘𝑘)) ∈ ℝ) |
102 | 101 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑘) ∈ ℂ → (abs‘(𝐺‘𝑘)) ∈ ℂ) |
103 | 71, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (abs‘(𝐺‘𝑘)) ∈ ℂ) |
104 | 100, 75, 103 | fsumser 15370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺‘𝑘)) = (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛)) |
105 | 80 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘 ∈ 𝑍) |
106 | 105, 23 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚)))‘𝑘) = (abs‘(𝐺‘𝑘))) |
107 | 81, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (abs‘(𝐺‘𝑘)) ∈ ℂ) |
108 | 106, 78, 107 | fsumser 15370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺‘𝑘)) = (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) |
109 | 104, 108 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺‘𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺‘𝑘))) = ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) |
110 | 84, 107 | fsumcl 15373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺‘𝑘)) ∈ ℂ) |
111 | 72, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (abs‘(𝐺‘𝑘)) ∈ ℂ) |
112 | 66, 111 | fsumcl 15373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺‘𝑘)) ∈ ℂ) |
113 | 88, 94, 63, 103 | fsumsplit 15381 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺‘𝑘)) = (Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺‘𝑘)) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺‘𝑘)))) |
114 | 110, 112,
113 | mvrladdd 11318 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺‘𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺‘𝑘))) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺‘𝑘))) |
115 | 109, 114 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺‘𝑘))) |
116 | 73, 98, 115 | 3brtr4d 5102 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) |
117 | 56, 61, 55, 62, 116 | letrd 11062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) |
118 | 55, 117 | absidd 15062 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) = ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) |
119 | 118 | breq1d 5080 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
((abs‘((seq𝑀( + ,
(𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 ↔ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) < 𝑥)) |
120 | | rpre 12667 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
121 | 120 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) |
122 | | lelttr 10996 |
. . . . . . . . . 10
⊢
(((abs‘((seq𝑀(
+ , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ ∧ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((abs‘((seq𝑀( + ,
𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
123 | 61, 55, 121, 122 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
(((abs‘((seq𝑀( + ,
𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
124 | 116, 123 | mpand 691 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗)) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
125 | 119, 124 | sylbid 239 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
((abs‘((seq𝑀( + ,
(𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
126 | 125 | anassrs 467 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → ((abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
127 | 126 | ralimdva 3102 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
128 | 127 | reximdva 3202 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
129 | 128 | ralimdva 3102 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑛) − (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ (abs‘(𝐺‘𝑚))))‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)) |
130 | 47, 129 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥) |
131 | | seqex 13651 |
. . 3
⊢ seq𝑀( + , 𝐺) ∈ V |
132 | 131 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
133 | 1, 8, 130, 132 | caucvg 15318 |
1
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |