MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpce Structured version   Visualization version   GIF version

Theorem cvgcmpce 15732
Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
cvgcmpce.1 𝑍 = (ℤ𝑀)
cvgcmpce.2 (𝜑𝑁𝑍)
cvgcmpce.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmpce.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
cvgcmpce.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmpce.6 (𝜑𝐶 ∈ ℝ)
cvgcmpce.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
cvgcmpce (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑁   𝑘,𝑍   𝑘,𝑀   𝜑,𝑘

Proof of Theorem cvgcmpce
Dummy variables 𝑚 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmpce.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmpce.2 . . . . . 6 (𝜑𝑁𝑍)
32, 1eleqtrdi 2843 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12747 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
6 cvgcmpce.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
71, 5, 6serf 13944 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
87ffvelcdmda 7026 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9 fveq2 6831 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
109oveq2d 7371 . . . . . . . 8 (𝑚 = 𝑘 → (𝐶 · (𝐹𝑚)) = (𝐶 · (𝐹𝑘)))
11 eqid 2733 . . . . . . . 8 (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚))) = (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))
12 ovex 7388 . . . . . . . 8 (𝐶 · (𝐹𝑘)) ∈ V
1310, 11, 12fvmpt 6938 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
1413adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
15 cvgcmpce.6 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐶 ∈ ℝ)
17 cvgcmpce.3 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1816, 17remulcld 11153 . . . . . 6 ((𝜑𝑘𝑍) → (𝐶 · (𝐹𝑘)) ∈ ℝ)
1914, 18eqeltrd 2833 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) ∈ ℝ)
20 2fveq3 6836 . . . . . . . 8 (𝑚 = 𝑘 → (abs‘(𝐺𝑚)) = (abs‘(𝐺𝑘)))
21 eqid 2733 . . . . . . . 8 (𝑚𝑍 ↦ (abs‘(𝐺𝑚))) = (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))
22 fvex 6844 . . . . . . . 8 (abs‘(𝐺𝑘)) ∈ V
2320, 21, 22fvmpt 6938 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
2423adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
256abscld 15353 . . . . . 6 ((𝜑𝑘𝑍) → (abs‘(𝐺𝑘)) ∈ ℝ)
2624, 25eqeltrd 2833 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ∈ ℝ)
2715recnd 11151 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
28 cvgcmpce.5 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
29 climdm 15468 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3028, 29sylib 218 . . . . . . 7 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3117recnd 11151 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
321, 5, 27, 30, 31, 14isermulc2 15572 . . . . . 6 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))))
33 climrel 15406 . . . . . . 7 Rel ⇝
3433releldmi 5894 . . . . . 6 (seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))) → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
3532, 34syl 17 . . . . 5 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
361uztrn2 12761 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
372, 36sylan 580 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
386absge0d 15361 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (abs‘(𝐺𝑘)))
3938, 24breqtrrd 5123 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
4037, 39syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
41 cvgcmpce.7 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
4237, 23syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
4337, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
4441, 42, 433brtr4d 5127 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ≤ ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘))
451, 2, 19, 26, 35, 40, 44cvgcmp 15730 . . . 4 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ )
461climcau 15585 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
475, 45, 46syl2anc 584 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
481, 5, 26serfre 13945 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
501uztrn2 12761 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5150adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛𝑍)
5249, 51ffvelcdmd 7027 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) ∈ ℝ)
53 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑍)
5449, 53ffvelcdmd 7027 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗) ∈ ℝ)
5552, 54resubcld 11556 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ)
56 0red 11126 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
577ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , 𝐺):𝑍⟶ℂ)
5857, 51ffvelcdmd 7027 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
5957, 53ffvelcdmd 7027 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
6058, 59subcld 11483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) ∈ ℂ)
6160abscld 15353 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ)
6260absge0d 15361 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))))
63 fzfid 13887 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) ∈ Fin)
64 difss 4085 . . . . . . . . . . . . . 14 ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)
65 ssfi 9093 . . . . . . . . . . . . . 14 (((𝑀...𝑛) ∈ Fin ∧ ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
6663, 64, 65sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
67 eldifi 4080 . . . . . . . . . . . . . 14 (𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗)) → 𝑘 ∈ (𝑀...𝑛))
68 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝜑)
69 elfzuz 13427 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7069, 1eleqtrrdi 2844 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
7168, 70, 6syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
7267, 71sylan2 593 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (𝐺𝑘) ∈ ℂ)
7366, 72fsumabs 15715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)) ≤ Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
74 eqidd 2734 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (𝐺𝑘))
7551, 1eleqtrdi 2843 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑀))
7674, 75, 71fsumser 15644 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑛))
77 eqidd 2734 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐺𝑘))
7853, 1eleqtrdi 2843 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑀))
79 elfzuz 13427 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
8079, 1eleqtrrdi 2844 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
8168, 80, 6syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
8277, 78, 81fsumser 15644 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑗))
8376, 82oveq12d 7373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)))
84 fzfid 13887 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ∈ Fin)
8584, 81fsumcl 15647 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) ∈ ℂ)
8666, 72fsumcl 15647 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘) ∈ ℂ)
87 disjdif 4421 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅
8887a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅)
89 undif2 4426 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ((𝑀...𝑗) ∪ (𝑀...𝑛))
90 fzss2 13471 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ𝑗) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
9190ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
92 ssequn1 4135 . . . . . . . . . . . . . . . . . 18 ((𝑀...𝑗) ⊆ (𝑀...𝑛) ↔ ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9391, 92sylib 218 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9489, 93eqtr2id 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) = ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))))
9588, 94, 63, 71fsumsplit 15655 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9685, 86, 95mvrladdd 11541 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9783, 96eqtr3d 2770 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9897fveq2d 6835 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9970adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
10099, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
101 abscl 15192 . . . . . . . . . . . . . . . . 17 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℝ)
102101recnd 11151 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℂ)
10371, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (abs‘(𝐺𝑘)) ∈ ℂ)
104100, 75, 103fsumser 15644 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛))
10580adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
106105, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
10781, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (abs‘(𝐺𝑘)) ∈ ℂ)
108106, 78, 107fsumser 15644 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))
109104, 108oveq12d 7373 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11084, 107fsumcl 15647 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) ∈ ℂ)
11172, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (abs‘(𝐺𝑘)) ∈ ℂ)
11266, 111fsumcl 15647 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)) ∈ ℂ)
11388, 94, 63, 103fsumsplit 15655 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘))))
114110, 112, 113mvrladdd 11541 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
115109, 114eqtr3d 2770 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
11673, 98, 1153brtr4d 5127 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11756, 61, 55, 62, 116letrd 11281 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11855, 117absidd 15337 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
119118breq1d 5105 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 ↔ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥))
120 rpre 12905 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
121120ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
122 lelttr 11214 . . . . . . . . . 10 (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
12361, 55, 121, 122syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
124116, 123mpand 695 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
125119, 124sylbid 240 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
126125anassrs 467 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
127126ralimdva 3145 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
128127reximdva 3146 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
129128ralimdva 3145 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
13047, 129mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)
131 seqex 13917 . . 3 seq𝑀( + , 𝐺) ∈ V
132131a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
1331, 8, 130, 132caucvg 15593 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   class class class wbr 5095  cmpt 5176  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  cc 11015  cr 11016  0cc0 11017   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cmin 11355  cz 12479  cuz 12742  +crp 12896  ...cfz 13414  seqcseq 13915  abscabs 15148  cli 15398  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601
This theorem is referenced by:  abscvgcvg  15733  geomulcvg  15790  cvgrat  15797  radcnvlem1  26369  radcnvlem2  26370  dvradcnv  26377  abelthlem5  26392  abelthlem7  26395  logtayllem  26615  binomcxplemnn0  44506
  Copyright terms: Public domain W3C validator