MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpce Structured version   Visualization version   GIF version

Theorem cvgcmpce 15173
Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
cvgcmpce.1 𝑍 = (ℤ𝑀)
cvgcmpce.2 (𝜑𝑁𝑍)
cvgcmpce.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmpce.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
cvgcmpce.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmpce.6 (𝜑𝐶 ∈ ℝ)
cvgcmpce.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
cvgcmpce (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑁   𝑘,𝑍   𝑘,𝑀   𝜑,𝑘

Proof of Theorem cvgcmpce
Dummy variables 𝑚 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmpce.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmpce.2 . . . . . 6 (𝜑𝑁𝑍)
32, 1eleqtrdi 2923 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12249 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
6 cvgcmpce.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
71, 5, 6serf 13399 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
87ffvelrnda 6851 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9 fveq2 6670 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
109oveq2d 7172 . . . . . . . 8 (𝑚 = 𝑘 → (𝐶 · (𝐹𝑚)) = (𝐶 · (𝐹𝑘)))
11 eqid 2821 . . . . . . . 8 (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚))) = (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))
12 ovex 7189 . . . . . . . 8 (𝐶 · (𝐹𝑘)) ∈ V
1310, 11, 12fvmpt 6768 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
1413adantl 484 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
15 cvgcmpce.6 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1615adantr 483 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐶 ∈ ℝ)
17 cvgcmpce.3 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1816, 17remulcld 10671 . . . . . 6 ((𝜑𝑘𝑍) → (𝐶 · (𝐹𝑘)) ∈ ℝ)
1914, 18eqeltrd 2913 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) ∈ ℝ)
20 2fveq3 6675 . . . . . . . 8 (𝑚 = 𝑘 → (abs‘(𝐺𝑚)) = (abs‘(𝐺𝑘)))
21 eqid 2821 . . . . . . . 8 (𝑚𝑍 ↦ (abs‘(𝐺𝑚))) = (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))
22 fvex 6683 . . . . . . . 8 (abs‘(𝐺𝑘)) ∈ V
2320, 21, 22fvmpt 6768 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
2423adantl 484 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
256abscld 14796 . . . . . 6 ((𝜑𝑘𝑍) → (abs‘(𝐺𝑘)) ∈ ℝ)
2624, 25eqeltrd 2913 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ∈ ℝ)
2715recnd 10669 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
28 cvgcmpce.5 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
29 climdm 14911 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3028, 29sylib 220 . . . . . . 7 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3117recnd 10669 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
321, 5, 27, 30, 31, 14isermulc2 15014 . . . . . 6 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))))
33 climrel 14849 . . . . . . 7 Rel ⇝
3433releldmi 5818 . . . . . 6 (seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))) → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
3532, 34syl 17 . . . . 5 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
361uztrn2 12263 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
372, 36sylan 582 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
386absge0d 14804 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (abs‘(𝐺𝑘)))
3938, 24breqtrrd 5094 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
4037, 39syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
41 cvgcmpce.7 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
4237, 23syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
4337, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
4441, 42, 433brtr4d 5098 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ≤ ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘))
451, 2, 19, 26, 35, 40, 44cvgcmp 15171 . . . 4 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ )
461climcau 15027 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
475, 45, 46syl2anc 586 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
481, 5, 26serfre 13400 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
4948ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
501uztrn2 12263 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5150adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛𝑍)
5249, 51ffvelrnd 6852 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) ∈ ℝ)
53 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑍)
5449, 53ffvelrnd 6852 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗) ∈ ℝ)
5552, 54resubcld 11068 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ)
56 0red 10644 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
577ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , 𝐺):𝑍⟶ℂ)
5857, 51ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
5957, 53ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
6058, 59subcld 10997 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) ∈ ℂ)
6160abscld 14796 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ)
6260absge0d 14804 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))))
63 fzfid 13342 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) ∈ Fin)
64 difss 4108 . . . . . . . . . . . . . 14 ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)
65 ssfi 8738 . . . . . . . . . . . . . 14 (((𝑀...𝑛) ∈ Fin ∧ ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
6663, 64, 65sylancl 588 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
67 eldifi 4103 . . . . . . . . . . . . . 14 (𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗)) → 𝑘 ∈ (𝑀...𝑛))
68 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝜑)
69 elfzuz 12905 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7069, 1eleqtrrdi 2924 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
7168, 70, 6syl2an 597 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
7267, 71sylan2 594 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (𝐺𝑘) ∈ ℂ)
7366, 72fsumabs 15156 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)) ≤ Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
74 eqidd 2822 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (𝐺𝑘))
7551, 1eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑀))
7674, 75, 71fsumser 15087 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑛))
77 eqidd 2822 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐺𝑘))
7853, 1eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑀))
79 elfzuz 12905 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
8079, 1eleqtrrdi 2924 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
8168, 80, 6syl2an 597 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
8277, 78, 81fsumser 15087 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑗))
8376, 82oveq12d 7174 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)))
84 fzfid 13342 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ∈ Fin)
8584, 81fsumcl 15090 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) ∈ ℂ)
8666, 72fsumcl 15090 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘) ∈ ℂ)
87 disjdif 4421 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅
8887a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅)
89 undif2 4425 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ((𝑀...𝑗) ∪ (𝑀...𝑛))
90 fzss2 12948 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ𝑗) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
9190ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
92 ssequn1 4156 . . . . . . . . . . . . . . . . . 18 ((𝑀...𝑗) ⊆ (𝑀...𝑛) ↔ ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9391, 92sylib 220 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9489, 93syl5req 2869 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) = ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))))
9588, 94, 63, 71fsumsplit 15097 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9685, 86, 95mvrladdd 11053 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9783, 96eqtr3d 2858 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9897fveq2d 6674 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9970adantl 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
10099, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
101 abscl 14638 . . . . . . . . . . . . . . . . 17 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℝ)
102101recnd 10669 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℂ)
10371, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (abs‘(𝐺𝑘)) ∈ ℂ)
104100, 75, 103fsumser 15087 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛))
10580adantl 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
106105, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
10781, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (abs‘(𝐺𝑘)) ∈ ℂ)
108106, 78, 107fsumser 15087 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))
109104, 108oveq12d 7174 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11084, 107fsumcl 15090 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) ∈ ℂ)
11172, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (abs‘(𝐺𝑘)) ∈ ℂ)
11266, 111fsumcl 15090 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)) ∈ ℂ)
11388, 94, 63, 103fsumsplit 15097 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘))))
114110, 112, 113mvrladdd 11053 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
115109, 114eqtr3d 2858 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
11673, 98, 1153brtr4d 5098 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11756, 61, 55, 62, 116letrd 10797 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11855, 117absidd 14782 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
119118breq1d 5076 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 ↔ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥))
120 rpre 12398 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
121120ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
122 lelttr 10731 . . . . . . . . . 10 (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
12361, 55, 121, 122syl3anc 1367 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
124116, 123mpand 693 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
125119, 124sylbid 242 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
126125anassrs 470 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
127126ralimdva 3177 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
128127reximdva 3274 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
129128ralimdva 3177 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
13047, 129mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)
131 seqex 13372 . . 3 seq𝑀( + , 𝐺) ∈ V
132131a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
1331, 8, 130, 132caucvg 15035 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  cz 11982  cuz 12244  +crp 12390  ...cfz 12893  seqcseq 13370  abscabs 14593  cli 14841  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043
This theorem is referenced by:  abscvgcvg  15174  geomulcvg  15232  cvgrat  15239  radcnvlem1  25001  radcnvlem2  25002  dvradcnv  25009  abelthlem5  25023  abelthlem7  25026  logtayllem  25242  binomcxplemnn0  40701
  Copyright terms: Public domain W3C validator