MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirecip Structured version   Visualization version   GIF version

Theorem trirecip 15805
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2

Proof of Theorem trirecip
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2cnd 12240 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
2 peano2nn 12174 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3 nnmulcl 12186 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
42, 3mpdan 687 . . . . 5 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ)
54nncnd 12178 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ)
64nnne0d 12212 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ≠ 0)
71, 5, 6divrecd 11937 . . 3 (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1)))))
87sumeq2i 15640 . 2 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))
9 nnuz 12812 . . . . 5 ℕ = (ℤ‘1)
10 1zzd 12540 . . . . 5 (⊤ → 1 ∈ ℤ)
11 id 22 . . . . . . . . 9 (𝑛 = 𝑘𝑛 = 𝑘)
12 oveq1 7376 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1311, 12oveq12d 7387 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1)))
1413oveq2d 7385 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1))))
15 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
16 ovex 7402 . . . . . . 7 (1 / (𝑘 · (𝑘 + 1))) ∈ V
1714, 15, 16fvmpt 6950 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
1817adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
194nnrecred 12213 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
2019recnd 11178 . . . . . 6 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2120adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2215trireciplem 15804 . . . . . . 7 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1
2322a1i 11 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1)
24 climrel 15434 . . . . . . 7 Rel ⇝
2524releldmi 5901 . . . . . 6 (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
2623, 25syl 17 . . . . 5 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
27 2cnd 12240 . . . . 5 (⊤ → 2 ∈ ℂ)
289, 10, 18, 21, 26, 27isummulc2 15704 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))))
299, 10, 18, 21, 23isumclim 15699 . . . . 5 (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1)
3029oveq2d 7385 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3128, 30eqtr3d 2766 . . 3 (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3231mptru 1547 . 2 Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)
33 2t1e2 12320 . 2 (2 · 1) = 2
348, 32, 333eqtri 2756 1 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   · cmul 11049   / cdiv 11811  cn 12162  2c2 12217  seqcseq 13942  cli 15426  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator