| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trirecip | Structured version Visualization version GIF version | ||
| Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| Ref | Expression |
|---|---|
| trirecip | ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd 12344 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) | |
| 2 | peano2nn 12278 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
| 3 | nnmulcl 12290 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ) | |
| 4 | 2, 3 | mpdan 687 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ) |
| 5 | 4 | nncnd 12282 | . . . 4 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ) |
| 6 | 4 | nnne0d 12316 | . . . 4 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ≠ 0) |
| 7 | 1, 5, 6 | divrecd 12046 | . . 3 ⊢ (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1))))) |
| 8 | 7 | sumeq2i 15734 | . 2 ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) |
| 9 | nnuz 12921 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 1zzd 12648 | . . . . 5 ⊢ (⊤ → 1 ∈ ℤ) | |
| 11 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) | |
| 12 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) | |
| 13 | 11, 12 | oveq12d 7449 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1))) |
| 14 | 13 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1)))) |
| 15 | eqid 2737 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) | |
| 16 | ovex 7464 | . . . . . . 7 ⊢ (1 / (𝑘 · (𝑘 + 1))) ∈ V | |
| 17 | 14, 15, 16 | fvmpt 7016 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1)))) |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1)))) |
| 19 | 4 | nnrecred 12317 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) |
| 20 | 19 | recnd 11289 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ) |
| 22 | 15 | trireciplem 15898 | . . . . . . 7 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1) |
| 24 | climrel 15528 | . . . . . . 7 ⊢ Rel ⇝ | |
| 25 | 24 | releldmi 5959 | . . . . . 6 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ ) |
| 26 | 23, 25 | syl 17 | . . . . 5 ⊢ (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ ) |
| 27 | 2cnd 12344 | . . . . 5 ⊢ (⊤ → 2 ∈ ℂ) | |
| 28 | 9, 10, 18, 21, 26, 27 | isummulc2 15798 | . . . 4 ⊢ (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))) |
| 29 | 9, 10, 18, 21, 23 | isumclim 15793 | . . . . 5 ⊢ (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1) |
| 30 | 29 | oveq2d 7447 | . . . 4 ⊢ (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)) |
| 31 | 28, 30 | eqtr3d 2779 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)) |
| 32 | 31 | mptru 1547 | . 2 ⊢ Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1) |
| 33 | 2t1e2 12429 | . 2 ⊢ (2 · 1) = 2 | |
| 34 | 8, 32, 33 | 3eqtri 2769 | 1 ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 + caddc 11158 · cmul 11160 / cdiv 11920 ℕcn 12266 2c2 12321 seqcseq 14042 ⇝ cli 15520 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |