MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirecip Structured version   Visualization version   GIF version

Theorem trirecip 15895
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2

Proof of Theorem trirecip
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2cnd 12341 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
2 peano2nn 12275 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3 nnmulcl 12287 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
42, 3mpdan 687 . . . . 5 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ)
54nncnd 12279 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ)
64nnne0d 12313 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ≠ 0)
71, 5, 6divrecd 12043 . . 3 (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1)))))
87sumeq2i 15730 . 2 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))
9 nnuz 12918 . . . . 5 ℕ = (ℤ‘1)
10 1zzd 12645 . . . . 5 (⊤ → 1 ∈ ℤ)
11 id 22 . . . . . . . . 9 (𝑛 = 𝑘𝑛 = 𝑘)
12 oveq1 7437 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1311, 12oveq12d 7448 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1)))
1413oveq2d 7446 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1))))
15 eqid 2734 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
16 ovex 7463 . . . . . . 7 (1 / (𝑘 · (𝑘 + 1))) ∈ V
1714, 15, 16fvmpt 7015 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
1817adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
194nnrecred 12314 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
2019recnd 11286 . . . . . 6 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2120adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2215trireciplem 15894 . . . . . . 7 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1
2322a1i 11 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1)
24 climrel 15524 . . . . . . 7 Rel ⇝
2524releldmi 5961 . . . . . 6 (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
2623, 25syl 17 . . . . 5 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
27 2cnd 12341 . . . . 5 (⊤ → 2 ∈ ℂ)
289, 10, 18, 21, 26, 27isummulc2 15794 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))))
299, 10, 18, 21, 23isumclim 15789 . . . . 5 (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1)
3029oveq2d 7446 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3128, 30eqtr3d 2776 . . 3 (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3231mptru 1543 . 2 Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)
33 2t1e2 12426 . 2 (2 · 1) = 2
348, 32, 333eqtri 2766 1 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wtru 1537  wcel 2105   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157   / cdiv 11917  cn 12263  2c2 12318  seqcseq 14038  cli 15516  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator