Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlic Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlic 48004
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlic.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlic.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlic.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlic (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clnbgr3stgrgrlic.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
21fvexi 6854 . . . . . . 7 𝑉 ∈ V
3 clnbgr3stgrgrlic.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
43fvexi 6854 . . . . . . 7 𝑊 ∈ V
52, 4pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ 𝑊 ∈ V)
6 breng 8904 . . . . . 6 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
75, 6mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
8 usgruhgr 29166 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
98adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → 𝐻 ∈ UHGraph)
1093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
113clnbgrssvtx 47825 . . . . . . . . . . . . . . . . . . 19 (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊
1211a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊)
133isubgruhgr 47861 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
1410, 12, 13syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
15 f1of 6782 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑉1-1-onto𝑊𝑓:𝑉𝑊)
16153ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑓:𝑉𝑊)
17 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑥𝑉)
1816, 17ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (𝑓𝑥) ∈ 𝑊)
19 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑓𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝑓𝑥)))
2019oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑓𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2120breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑓𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2221rspcv 3581 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2318, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
24233exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (𝑥𝑉 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
2524com34 91 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
26253imp1 1348 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
27 gricsym 47914 . . . . . . . . . . . . . . . . 17 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
2814, 26, 27sylc 65 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2928anim1ci 616 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
30 grictr 47916 . . . . . . . . . . . . . . 15 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3231ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3332ralimdva 3145 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
34333exp 1119 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3534com24 95 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3635imp32 418 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3736ancld 550 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3837eximdv 1917 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3938ex 412 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
4039com23 86 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
417, 40sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
42413impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
43423impib 1116 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
441, 3dfgrlic2 47993 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
45443adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
46453ad2ant1 1133 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
4743, 46mpbird 257 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3444  wss 3911   class class class wbr 5102  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cen 8892  0cn0 12418  Vtxcvtx 28976  UHGraphcuhgr 29036  USGraphcusgr 29129   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47853  𝑔𝑟 cgric 47869  StarGrcstgr 47943  𝑙𝑔𝑟 cgrlic 47969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-i2m1 11112  ax-1ne0 11113  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-2 12225  df-vtx 28978  df-iedg 28979  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-usgr 29131  df-clnbgr 47813  df-isubgr 47854  df-grim 47871  df-gric 47874  df-grlim 47970  df-grlic 47973
This theorem is referenced by:  gpg5grlic  48077
  Copyright terms: Public domain W3C validator