Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlic Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlic 48119
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlim.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlim.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlim.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlic (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦   𝑦,𝐺
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clnbgr3stgrgrlim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
21fvexi 6836 . . . . . . 7 𝑉 ∈ V
3 clnbgr3stgrgrlim.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
43fvexi 6836 . . . . . . 7 𝑊 ∈ V
52, 4pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ 𝑊 ∈ V)
6 breng 8878 . . . . . 6 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
75, 6mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
8 usgruhgr 29164 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
98adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → 𝐻 ∈ UHGraph)
1093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
113clnbgrssvtx 47930 . . . . . . . . . . . . . . . . . . 19 (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊
1211a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊)
133isubgruhgr 47967 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
1410, 12, 13syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
15 f1of 6763 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑉1-1-onto𝑊𝑓:𝑉𝑊)
16153ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑓:𝑉𝑊)
17 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑥𝑉)
1816, 17ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (𝑓𝑥) ∈ 𝑊)
19 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑓𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝑓𝑥)))
2019oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑓𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2120breq1d 5099 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑓𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2221rspcv 3568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2318, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
24233exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (𝑥𝑉 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
2524com34 91 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
26253imp1 1348 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
27 gricsym 48020 . . . . . . . . . . . . . . . . 17 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
2814, 26, 27sylc 65 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2928anim1ci 616 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
30 grictr 48022 . . . . . . . . . . . . . . 15 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3231ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3332ralimdva 3144 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
34333exp 1119 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3534com24 95 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3635imp32 418 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3736ancld 550 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3837eximdv 1918 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3938ex 412 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
4039com23 86 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
417, 40sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
42413impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
43423impib 1116 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
441, 3dfgrlic2 48107 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
45443adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
46453ad2ant1 1133 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
4743, 46mpbird 257 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cen 8866  0cn0 12381  Vtxcvtx 28974  UHGraphcuhgr 29034  USGraphcusgr 29127   ClNeighbVtx cclnbgr 47917   ISubGr cisubgr 47959  𝑔𝑟 cgric 47975  StarGrcstgr 48050  𝑙𝑔𝑟 cgrlic 48076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-i2m1 11074  ax-1ne0 11075  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-2 12188  df-vtx 28976  df-iedg 28977  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-usgr 29129  df-clnbgr 47918  df-isubgr 47960  df-grim 47977  df-gric 47980  df-grlim 48077  df-grlic 48080
This theorem is referenced by:  gpg5grlic  48193
  Copyright terms: Public domain W3C validator