Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlic Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlic 48015
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlic.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlic.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlic.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlic (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clnbgr3stgrgrlic.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
21fvexi 6875 . . . . . . 7 𝑉 ∈ V
3 clnbgr3stgrgrlic.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
43fvexi 6875 . . . . . . 7 𝑊 ∈ V
52, 4pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ 𝑊 ∈ V)
6 breng 8930 . . . . . 6 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
75, 6mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
8 usgruhgr 29120 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
98adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → 𝐻 ∈ UHGraph)
1093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
113clnbgrssvtx 47836 . . . . . . . . . . . . . . . . . . 19 (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊
1211a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊)
133isubgruhgr 47872 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
1410, 12, 13syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
15 f1of 6803 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑉1-1-onto𝑊𝑓:𝑉𝑊)
16153ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑓:𝑉𝑊)
17 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑥𝑉)
1816, 17ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (𝑓𝑥) ∈ 𝑊)
19 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑓𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝑓𝑥)))
2019oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑓𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2120breq1d 5120 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑓𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2221rspcv 3587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2318, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
24233exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (𝑥𝑉 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
2524com34 91 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
26253imp1 1348 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
27 gricsym 47925 . . . . . . . . . . . . . . . . 17 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
2814, 26, 27sylc 65 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2928anim1ci 616 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
30 grictr 47927 . . . . . . . . . . . . . . 15 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3231ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3332ralimdva 3146 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
34333exp 1119 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3534com24 95 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3635imp32 418 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3736ancld 550 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3837eximdv 1917 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3938ex 412 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
4039com23 86 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
417, 40sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
42413impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
43423impib 1116 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
441, 3dfgrlic2 48004 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
45443adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
46453ad2ant1 1133 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
4743, 46mpbird 257 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  wss 3917   class class class wbr 5110  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  0cn0 12449  Vtxcvtx 28930  UHGraphcuhgr 28990  USGraphcusgr 29083   ClNeighbVtx cclnbgr 47823   ISubGr cisubgr 47864  𝑔𝑟 cgric 47880  StarGrcstgr 47954  𝑙𝑔𝑟 cgrlic 47980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-2 12256  df-vtx 28932  df-iedg 28933  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-usgr 29085  df-clnbgr 47824  df-isubgr 47865  df-grim 47882  df-gric 47885  df-grlim 47981  df-grlic 47984
This theorem is referenced by:  gpg5grlic  48088
  Copyright terms: Public domain W3C validator