Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlic Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlic 48014
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlim.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlim.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlim.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlic (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦   𝑦,𝐺
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clnbgr3stgrgrlim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
21fvexi 6836 . . . . . . 7 𝑉 ∈ V
3 clnbgr3stgrgrlim.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
43fvexi 6836 . . . . . . 7 𝑊 ∈ V
52, 4pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ 𝑊 ∈ V)
6 breng 8881 . . . . . 6 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
75, 6mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
8 usgruhgr 29131 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
98adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → 𝐻 ∈ UHGraph)
1093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
113clnbgrssvtx 47825 . . . . . . . . . . . . . . . . . . 19 (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊
1211a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊)
133isubgruhgr 47862 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
1410, 12, 13syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
15 f1of 6764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑉1-1-onto𝑊𝑓:𝑉𝑊)
16153ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑓:𝑉𝑊)
17 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑥𝑉)
1816, 17ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (𝑓𝑥) ∈ 𝑊)
19 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑓𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝑓𝑥)))
2019oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑓𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2120breq1d 5102 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑓𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2221rspcv 3573 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2318, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
24233exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (𝑥𝑉 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
2524com34 91 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
26253imp1 1348 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
27 gricsym 47915 . . . . . . . . . . . . . . . . 17 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
2814, 26, 27sylc 65 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2928anim1ci 616 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
30 grictr 47917 . . . . . . . . . . . . . . 15 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3231ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3332ralimdva 3141 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
34333exp 1119 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3534com24 95 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3635imp32 418 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3736ancld 550 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3837eximdv 1917 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3938ex 412 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
4039com23 86 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
417, 40sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
42413impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
43423impib 1116 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
441, 3dfgrlic2 48002 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
45443adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
46453ad2ant1 1133 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
4743, 46mpbird 257 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3436  wss 3903   class class class wbr 5092  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  0cn0 12384  Vtxcvtx 28941  UHGraphcuhgr 29001  USGraphcusgr 29094   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47854  𝑔𝑟 cgric 47870  StarGrcstgr 47945  𝑙𝑔𝑟 cgrlic 47971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-i2m1 11077  ax-1ne0 11078  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-2 12191  df-vtx 28943  df-iedg 28944  df-uhgr 29003  df-upgr 29027  df-uspgr 29095  df-usgr 29096  df-clnbgr 47813  df-isubgr 47855  df-grim 47872  df-gric 47875  df-grlim 47972  df-grlic 47975
This theorem is referenced by:  gpg5grlic  48088
  Copyright terms: Public domain W3C validator