Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlic Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlic 47932
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlic.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlic.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlic.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlic (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clnbgr3stgrgrlic.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
21fvexi 6887 . . . . . . 7 𝑉 ∈ V
3 clnbgr3stgrgrlic.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
43fvexi 6887 . . . . . . 7 𝑊 ∈ V
52, 4pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ 𝑊 ∈ V)
6 breng 8963 . . . . . 6 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
75, 6mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 ↔ ∃𝑓 𝑓:𝑉1-1-onto𝑊))
8 usgruhgr 29099 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
98adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → 𝐻 ∈ UHGraph)
1093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
113clnbgrssvtx 47771 . . . . . . . . . . . . . . . . . . 19 (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊
1211a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊)
133isubgruhgr 47807 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝑓𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
1410, 12, 13syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph)
15 f1of 6815 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑉1-1-onto𝑊𝑓:𝑉𝑊)
16153ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑓:𝑉𝑊)
17 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → 𝑥𝑉)
1816, 17ffvelcdmd 7072 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (𝑓𝑥) ∈ 𝑊)
19 oveq2 7408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑓𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝑓𝑥)))
2019oveq2d 7416 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑓𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2120breq1d 5127 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑓𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2221rspcv 3595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
2318, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
24233exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (𝑥𝑉 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
2524com34 91 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))))
26253imp1 1347 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
27 gricsym 47843 . . . . . . . . . . . . . . . . 17 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
2814, 26, 27sylc 65 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
2928anim1ci 616 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
30 grictr 47845 . . . . . . . . . . . . . . 15 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))
3231ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3332ralimdva 3150 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ 𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
34333exp 1119 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑓:𝑉1-1-onto𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3534com24 95 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
3635imp32 418 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
3736ancld 550 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (𝑓:𝑉1-1-onto𝑊 → (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3837eximdv 1916 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) ∧ (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁))) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
3938ex 412 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
4039com23 86 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (∃𝑓 𝑓:𝑉1-1-onto𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
417, 40sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝑉𝑊 → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))))
42413impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → ((∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
43423impib 1116 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥)))))
441, 3dfgrlic2 47921 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
45443adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
46453ad2ant1 1133 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓𝑥))))))
4743, 46mpbird 257 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺𝑙𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3050  Vcvv 3457  wss 3924   class class class wbr 5117  wf 6524  1-1-ontowf1o 6527  cfv 6528  (class class class)co 7400  cen 8951  0cn0 12494  Vtxcvtx 28909  UHGraphcuhgr 28969  USGraphcusgr 29062   ClNeighbVtx cclnbgr 47758   ISubGr cisubgr 47799  𝑔𝑟 cgric 47815  StarGrcstgr 47871  𝑙𝑔𝑟 cgrlic 47897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-i2m1 11190  ax-1ne0 11191  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-1o 8475  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-2 12296  df-vtx 28911  df-iedg 28912  df-uhgr 28971  df-upgr 28995  df-uspgr 29063  df-usgr 29064  df-clnbgr 47759  df-isubgr 47800  df-grim 47817  df-gric 47820  df-grlim 47898  df-grlic 47901
This theorem is referenced by:  gpg5grlic  48000
  Copyright terms: Public domain W3C validator