Proof of Theorem clnbgr3stgrgrlim
| Step | Hyp | Ref
| Expression |
| 1 | | simp13 1206 |
. 2
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
𝐹:𝑉–1-1-onto→𝑊) |
| 2 | | usgruhgr 29149 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ USGraph → 𝐻 ∈
UHGraph) |
| 3 | 2 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐻 ∈ UHGraph) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
𝐻 ∈
UHGraph) |
| 5 | | clnbgr3stgrgrlim.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = (Vtx‘𝐻) |
| 6 | 5 | clnbgrssvtx 47816 |
. . . . . . . . . . . 12
⊢ (𝐻 ClNeighbVtx (𝐹‘𝑥)) ⊆ 𝑊 |
| 7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) → (𝐻 ClNeighbVtx (𝐹‘𝑥)) ⊆ 𝑊) |
| 8 | 5 | isubgruhgr 47853 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝐹‘𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ∈ UHGraph) |
| 9 | 4, 7, 8 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ∈ UHGraph) |
| 10 | | f1of 6768 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉⟶𝑊) |
| 11 | 10 | 3ad2ant3 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐹:𝑉⟶𝑊) |
| 12 | 11 | ffvelcdmda 7022 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) ∈ 𝑊) |
| 13 | | oveq2 7361 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐹‘𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝐹‘𝑥))) |
| 14 | 13 | oveq2d 7369 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐹‘𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) |
| 15 | 14 | breq1d 5105 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁) ↔
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁))) |
| 16 | 15 | rspcv 3575 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) ∈ 𝑊 → (∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁) →
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁))) |
| 17 | 12, 16 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁) →
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁))) |
| 18 | 17 | impancom 451 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
(𝑥 ∈ 𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁))) |
| 19 | 18 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁)) |
| 20 | | gricsym 47906 |
. . . . . . . . . 10
⊢ ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))) ≃𝑔𝑟
(StarGr‘𝑁) →
(StarGr‘𝑁)
≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))))) |
| 21 | 9, 19, 20 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) → (StarGr‘𝑁) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) |
| 22 | 21 | anim1ci 616 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USGraph ∧ 𝐻 ∈
USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁)) →
((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
(StarGr‘𝑁)
≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))))) |
| 23 | | grictr 47908 |
. . . . . . . 8
⊢ (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
(StarGr‘𝑁)
≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
⊢
(((((𝐺 ∈
USGraph ∧ 𝐻 ∈
USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁)) →
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) |
| 25 | 24 | ex 412 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) ∧
𝑥 ∈ 𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) →
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))))) |
| 26 | 25 | ralimdva 3141 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
(∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) →
∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥))))) |
| 27 | 26 | ex 412 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁) →
(∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) →
∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))))) |
| 28 | 27 | com23 86 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) →
(∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁) →
∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))))) |
| 29 | 28 | 3imp 1110 |
. 2
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))) |
| 30 | | clnbgr3stgrgrlim.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 31 | 30 | fvexi 6840 |
. . . . . . 7
⊢ 𝑉 ∈ V |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝑉 ∈ V) |
| 33 | 10, 32 | fexd 7167 |
. . . . 5
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹 ∈ V) |
| 34 | 33 | 3anim3i 1154 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) → (𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V)) |
| 35 | 34 | 3ad2ant1 1133 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
(𝐺 ∈ USGraph ∧
𝐻 ∈ USGraph ∧
𝐹 ∈
V)) |
| 36 | 30, 5 | isgrlim 47967 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))))) |
| 37 | 35, 36 | syl 17 |
. 2
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
(𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑥)))))) |
| 38 | 1, 29, 37 | mpbir2and 713 |
1
⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟
(StarGr‘𝑁) ∧
∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟
(StarGr‘𝑁)) →
𝐹 ∈ (𝐺 GraphLocIso 𝐻)) |