Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlim Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlim 48143
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlim.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlim.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlim.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlim (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐺(𝑦)   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlim
StepHypRef Expression
1 simp13 1206 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹:𝑉1-1-onto𝑊)
2 usgruhgr 29166 . . . . . . . . . . . . 13 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
323ad2ant2 1134 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐻 ∈ UHGraph)
43adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
5 clnbgr3stgrgrlim.w . . . . . . . . . . . . 13 𝑊 = (Vtx‘𝐻)
65clnbgrssvtx 47955 . . . . . . . . . . . 12 (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊
76a1i 11 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊)
85isubgruhgr 47992 . . . . . . . . . . 11 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph)
94, 7, 8syl2an2r 685 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph)
10 f1of 6768 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉𝑊)
11103ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐹:𝑉𝑊)
1211ffvelcdmda 7023 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑊)
13 oveq2 7360 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝐹𝑥)))
1413oveq2d 7368 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
1514breq1d 5103 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1615rspcv 3569 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1712, 16syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1817impancom 451 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1918imp 406 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
20 gricsym 48045 . . . . . . . . . 10 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
219, 19, 20sylc 65 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2221anim1ci 616 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
23 grictr 48047 . . . . . . . 8 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2422, 23syl 17 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2524ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
2625ralimdva 3145 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
2726ex 412 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
2827com23 86 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
29283imp 1110 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
30 clnbgr3stgrgrlim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3130fvexi 6842 . . . . . . 7 𝑉 ∈ V
3231a1i 11 . . . . . 6 (𝐹:𝑉1-1-onto𝑊𝑉 ∈ V)
3310, 32fexd 7167 . . . . 5 (𝐹:𝑉1-1-onto𝑊𝐹 ∈ V)
34333anim3i 1154 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V))
35343ad2ant1 1133 . . 3 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V))
3630, 5isgrlim 48106 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
3735, 36syl 17 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
381, 29, 37mpbir2and 713 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898   class class class wbr 5093  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  0cn0 12388  Vtxcvtx 28976  UHGraphcuhgr 29036  USGraphcusgr 29129   ClNeighbVtx cclnbgr 47942   ISubGr cisubgr 47984  𝑔𝑟 cgric 48000  StarGrcstgr 48075   GraphLocIso cgrlim 48100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-2 12195  df-vtx 28978  df-iedg 28979  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-usgr 29131  df-clnbgr 47943  df-isubgr 47985  df-grim 48002  df-gric 48005  df-grlim 48102
This theorem is referenced by:  gpg5grlim  48217
  Copyright terms: Public domain W3C validator