Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr3stgrgrlim Structured version   Visualization version   GIF version

Theorem clnbgr3stgrgrlim 48049
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025.)
Hypotheses
Ref Expression
clnbgr3stgrgrlim.n 𝑁 ∈ ℕ0
clnbgr3stgrgrlim.v 𝑉 = (Vtx‘𝐺)
clnbgr3stgrgrlim.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
clnbgr3stgrgrlim (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐺(𝑦)   𝑉(𝑦)

Proof of Theorem clnbgr3stgrgrlim
StepHypRef Expression
1 simp13 1206 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹:𝑉1-1-onto𝑊)
2 usgruhgr 29162 . . . . . . . . . . . . 13 (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph)
323ad2ant2 1134 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐻 ∈ UHGraph)
43adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐻 ∈ UHGraph)
5 clnbgr3stgrgrlim.w . . . . . . . . . . . . 13 𝑊 = (Vtx‘𝐻)
65clnbgrssvtx 47861 . . . . . . . . . . . 12 (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊
76a1i 11 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊)
85isubgruhgr 47898 . . . . . . . . . . 11 ((𝐻 ∈ UHGraph ∧ (𝐻 ClNeighbVtx (𝐹𝑥)) ⊆ 𝑊) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph)
94, 7, 8syl2an2r 685 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph)
10 f1of 6763 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉𝑊)
11103ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐹:𝑉𝑊)
1211ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑊)
13 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑥) → (𝐻 ClNeighbVtx 𝑦) = (𝐻 ClNeighbVtx (𝐹𝑥)))
1413oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑥) → (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) = (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
1514breq1d 5101 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → ((𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) ↔ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1615rspcv 3573 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝑊 → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1712, 16syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑥𝑉) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1817impancom 451 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝑥𝑉 → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁)))
1918imp 406 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁))
20 gricsym 47951 . . . . . . . . . 10 ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ∈ UHGraph → ((𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))) ≃𝑔𝑟 (StarGr‘𝑁) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
219, 19, 20sylc 65 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2221anim1ci 616 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
23 grictr 47953 . . . . . . . 8 (((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ (StarGr‘𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2422, 23syl 17 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) ∧ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
2524ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) ∧ 𝑥𝑉) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
2625ralimdva 3144 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥)))))
2726ex 412 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
2827com23 86 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) → (∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
29283imp 1110 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))
30 clnbgr3stgrgrlim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3130fvexi 6836 . . . . . . 7 𝑉 ∈ V
3231a1i 11 . . . . . 6 (𝐹:𝑉1-1-onto𝑊𝑉 ∈ V)
3310, 32fexd 7161 . . . . 5 (𝐹:𝑉1-1-onto𝑊𝐹 ∈ V)
34333anim3i 1154 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) → (𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V))
35343ad2ant1 1133 . . 3 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V))
3630, 5isgrlim 48012 . . 3 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
3735, 36syl 17 . 2 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑥))))))
381, 29, 37mpbir2and 713 1 (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉1-1-onto𝑊) ∧ ∀𝑥𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902   class class class wbr 5091  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cn0 12378  Vtxcvtx 28972  UHGraphcuhgr 29032  USGraphcusgr 29125   ClNeighbVtx cclnbgr 47848   ISubGr cisubgr 47890  𝑔𝑟 cgric 47906  StarGrcstgr 47981   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-i2m1 11071  ax-1ne0 11072  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-2 12185  df-vtx 28974  df-iedg 28975  df-uhgr 29034  df-upgr 29058  df-uspgr 29126  df-usgr 29127  df-clnbgr 47849  df-isubgr 47891  df-grim 47908  df-gric 47911  df-grlim 48008
This theorem is referenced by:  gpg5grlim  48123
  Copyright terms: Public domain W3C validator