Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicref Structured version   Visualization version   GIF version

Theorem grlicref 47829
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicref (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)

Proof of Theorem grlicref
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6935 . . . 4 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
21resiexd 7253 . . 3 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ V)
3 eqid 2740 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43clnbgrssvtx 47704 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
54a1i 11 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
63isubgruhgr 47738 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
75, 6sylan2 592 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
8 gricref 47773 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
97, 8syl 17 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
109ralrimiva 3152 . . . 4 (𝐺 ∈ UHGraph → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
11 f1oi 6900 . . . 4 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
1210, 11jctil 519 . . 3 (𝐺 ∈ UHGraph → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
13 f1oeq1 6850 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)))
14 fveq1 6919 . . . . . . . . 9 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣))
1514oveq2d 7464 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))
1615oveq2d 7464 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))))
1716breq2d 5178 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))))
18 fvresi 7207 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺))‘𝑣) = 𝑣)
1918oveq2d 7464 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣))
2019oveq2d 7464 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
2120breq2d 5178 . . . . . 6 (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2217, 21sylan9bb 509 . . . . 5 ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2322ralbidva 3182 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2413, 23anbi12d 631 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))))
252, 12, 24spcedv 3611 . 2 (𝐺 ∈ UHGraph → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))))
263, 3dfgrlic2 47825 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2726anidms 566 . 2 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2825, 27mpbird 257 1 (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166   I cid 5592  cres 5702  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  UHGraphcuhgr 29091   ClNeighbVtx cclnbgr 47692   ISubGr cisubgr 47732  𝑔𝑟 cgric 47746  𝑙𝑔𝑟 cgrlic 47801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-uhgr 29093  df-clnbgr 47693  df-isubgr 47733  df-grim 47748  df-gric 47751  df-grlim 47802  df-grlic 47805
This theorem is referenced by:  grlicer  47833
  Copyright terms: Public domain W3C validator