Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicref Structured version   Visualization version   GIF version

Theorem grlicref 47997
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicref (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)

Proof of Theorem grlicref
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6841 . . . 4 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
21resiexd 7156 . . 3 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ V)
3 eqid 2729 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43clnbgrssvtx 47816 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
54a1i 11 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
63isubgruhgr 47853 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
75, 6sylan2 593 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
8 gricref 47905 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
97, 8syl 17 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
109ralrimiva 3121 . . . 4 (𝐺 ∈ UHGraph → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
11 f1oi 6806 . . . 4 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
1210, 11jctil 519 . . 3 (𝐺 ∈ UHGraph → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
13 f1oeq1 6756 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)))
14 fveq1 6825 . . . . . . . . 9 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣))
1514oveq2d 7369 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))
1615oveq2d 7369 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))))
1716breq2d 5107 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))))
18 fvresi 7113 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺))‘𝑣) = 𝑣)
1918oveq2d 7369 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣))
2019oveq2d 7369 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
2120breq2d 5107 . . . . . 6 (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2217, 21sylan9bb 509 . . . . 5 ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2322ralbidva 3150 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2413, 23anbi12d 632 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))))
252, 12, 24spcedv 3555 . 2 (𝐺 ∈ UHGraph → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))))
263, 3dfgrlic2 47993 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2726anidms 566 . 2 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2825, 27mpbird 257 1 (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3438  wss 3905   class class class wbr 5095   I cid 5517  cres 5625  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  UHGraphcuhgr 29019   ClNeighbVtx cclnbgr 47803   ISubGr cisubgr 47845  𝑔𝑟 cgric 47861  𝑙𝑔𝑟 cgrlic 47962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-vtx 28961  df-iedg 28962  df-uhgr 29021  df-clnbgr 47804  df-isubgr 47846  df-grim 47863  df-gric 47866  df-grlim 47963  df-grlic 47966
This theorem is referenced by:  grlicer  48001
  Copyright terms: Public domain W3C validator