Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicref Structured version   Visualization version   GIF version

Theorem grlicref 47977
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicref (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)

Proof of Theorem grlicref
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6920 . . . 4 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
21resiexd 7237 . . 3 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ V)
3 eqid 2736 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43clnbgrssvtx 47823 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
54a1i 11 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
63isubgruhgr 47859 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
75, 6sylan2 593 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
8 gricref 47894 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
97, 8syl 17 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
109ralrimiva 3145 . . . 4 (𝐺 ∈ UHGraph → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
11 f1oi 6885 . . . 4 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
1210, 11jctil 519 . . 3 (𝐺 ∈ UHGraph → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
13 f1oeq1 6835 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)))
14 fveq1 6904 . . . . . . . . 9 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣))
1514oveq2d 7448 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))
1615oveq2d 7448 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))))
1716breq2d 5154 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))))
18 fvresi 7194 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺))‘𝑣) = 𝑣)
1918oveq2d 7448 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣))
2019oveq2d 7448 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
2120breq2d 5154 . . . . . 6 (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2217, 21sylan9bb 509 . . . . 5 ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2322ralbidva 3175 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2413, 23anbi12d 632 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))))
252, 12, 24spcedv 3597 . 2 (𝐺 ∈ UHGraph → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))))
263, 3dfgrlic2 47973 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2726anidms 566 . 2 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2825, 27mpbird 257 1 (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3060  Vcvv 3479  wss 3950   class class class wbr 5142   I cid 5576  cres 5686  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  Vtxcvtx 29014  UHGraphcuhgr 29074   ClNeighbVtx cclnbgr 47810   ISubGr cisubgr 47851  𝑔𝑟 cgric 47867  𝑙𝑔𝑟 cgrlic 47949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-1o 8507  df-map 8869  df-vtx 29016  df-iedg 29017  df-uhgr 29076  df-clnbgr 47811  df-isubgr 47852  df-grim 47869  df-gric 47872  df-grlim 47950  df-grlic 47953
This theorem is referenced by:  grlicer  47981
  Copyright terms: Public domain W3C validator