Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicref Structured version   Visualization version   GIF version

Theorem grlicref 47984
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicref (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)

Proof of Theorem grlicref
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6896 . . . 4 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
21resiexd 7213 . . 3 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ V)
3 eqid 2736 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43clnbgrssvtx 47812 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
54a1i 11 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
63isubgruhgr 47848 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
75, 6sylan2 593 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
8 gricref 47900 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
97, 8syl 17 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
109ralrimiva 3133 . . . 4 (𝐺 ∈ UHGraph → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
11 f1oi 6861 . . . 4 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
1210, 11jctil 519 . . 3 (𝐺 ∈ UHGraph → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
13 f1oeq1 6811 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)))
14 fveq1 6880 . . . . . . . . 9 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣))
1514oveq2d 7426 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))
1615oveq2d 7426 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))))
1716breq2d 5136 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))))
18 fvresi 7170 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺))‘𝑣) = 𝑣)
1918oveq2d 7426 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣))
2019oveq2d 7426 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
2120breq2d 5136 . . . . . 6 (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2217, 21sylan9bb 509 . . . . 5 ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2322ralbidva 3162 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2413, 23anbi12d 632 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))))
252, 12, 24spcedv 3582 . 2 (𝐺 ∈ UHGraph → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))))
263, 3dfgrlic2 47980 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2726anidms 566 . 2 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2825, 27mpbird 257 1 (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3052  Vcvv 3464  wss 3931   class class class wbr 5124   I cid 5552  cres 5661  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  UHGraphcuhgr 29040   ClNeighbVtx cclnbgr 47799   ISubGr cisubgr 47840  𝑔𝑟 cgric 47856  𝑙𝑔𝑟 cgrlic 47956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-1o 8485  df-map 8847  df-vtx 28982  df-iedg 28983  df-uhgr 29042  df-clnbgr 47800  df-isubgr 47841  df-grim 47858  df-gric 47861  df-grlim 47957  df-grlic 47960
This theorem is referenced by:  grlicer  47988
  Copyright terms: Public domain W3C validator