Step | Hyp | Ref
| Expression |
1 | | fvexd 6908 |
. . . 4
⊢ (𝐺 ∈ UHGraph →
(Vtx‘𝐺) ∈
V) |
2 | 1 | resiexd 7225 |
. . 3
⊢ (𝐺 ∈ UHGraph → ( I
↾ (Vtx‘𝐺))
∈ V) |
3 | | eqid 2726 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
4 | 3 | clnbgrssvtx 47438 |
. . . . . . . 8
⊢ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺) |
5 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) |
6 | 3 | isubgruhgr 47469 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph) |
7 | 5, 6 | sylan2 591 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph) |
8 | | gricref 47504 |
. . . . . 6
⊢ ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))) |
10 | 9 | ralrimiva 3136 |
. . . 4
⊢ (𝐺 ∈ UHGraph →
∀𝑣 ∈
(Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))) |
11 | | f1oi 6873 |
. . . 4
⊢ ( I
↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) |
12 | 10, 11 | jctil 518 |
. . 3
⊢ (𝐺 ∈ UHGraph → (( I
↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))) |
13 | | f1oeq1 6823 |
. . . 4
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺))) |
14 | | fveq1 6892 |
. . . . . . . . 9
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓‘𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣)) |
15 | 14 | oveq2d 7432 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓‘𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) |
16 | 15 | oveq2d 7432 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))) |
17 | 16 | breq2d 5157 |
. . . . . 6
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾
(Vtx‘𝐺))‘𝑣))))) |
18 | | fvresi 7179 |
. . . . . . . . 9
⊢ (𝑣 ∈ (Vtx‘𝐺) → (( I ↾
(Vtx‘𝐺))‘𝑣) = 𝑣) |
19 | 18 | oveq2d 7432 |
. . . . . . . 8
⊢ (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣)) |
20 | 19 | oveq2d 7432 |
. . . . . . 7
⊢ (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))) |
21 | 20 | breq2d 5157 |
. . . . . 6
⊢ (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾
(Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))) |
22 | 17, 21 | sylan9bb 508 |
. . . . 5
⊢ ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))) |
23 | 22 | ralbidva 3166 |
. . . 4
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))) |
24 | 13, 23 | anbi12d 630 |
. . 3
⊢ (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))) |
25 | 2, 12, 24 | spcedv 3583 |
. 2
⊢ (𝐺 ∈ UHGraph →
∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣))))) |
26 | 3, 3 | dfgrlic2 47534 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺
≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣)))))) |
27 | 26 | anidms 565 |
. 2
⊢ (𝐺 ∈ UHGraph → (𝐺
≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓‘𝑣)))))) |
28 | 25, 27 | mpbird 256 |
1
⊢ (𝐺 ∈ UHGraph → 𝐺
≃𝑙𝑔𝑟 𝐺) |