Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicref Structured version   Visualization version   GIF version

Theorem grlicref 47908
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicref (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)

Proof of Theorem grlicref
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6922 . . . 4 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
21resiexd 7236 . . 3 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ V)
3 eqid 2735 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43clnbgrssvtx 47756 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
54a1i 11 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
63isubgruhgr 47792 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
75, 6sylan2 593 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph)
8 gricref 47827 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ∈ UHGraph → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
97, 8syl 17 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
109ralrimiva 3144 . . . 4 (𝐺 ∈ UHGraph → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
11 f1oi 6887 . . . 4 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
1210, 11jctil 519 . . 3 (𝐺 ∈ UHGraph → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
13 f1oeq1 6837 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)))
14 fveq1 6906 . . . . . . . . 9 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝑓𝑣) = (( I ↾ (Vtx‘𝐺))‘𝑣))
1514oveq2d 7447 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx (𝑓𝑣)) = (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))
1615oveq2d 7447 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))))
1716breq2d 5160 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)))))
18 fvresi 7193 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺))‘𝑣) = 𝑣)
1918oveq2d 7447 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣)) = (𝐺 ClNeighbVtx 𝑣))
2019oveq2d 7447 . . . . . . 7 (𝑣 ∈ (Vtx‘𝐺) → (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) = (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))
2120breq2d 5160 . . . . . 6 (𝑣 ∈ (Vtx‘𝐺) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (( I ↾ (Vtx‘𝐺))‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2217, 21sylan9bb 509 . . . . 5 ((𝑓 = ( I ↾ (Vtx‘𝐺)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2322ralbidva 3174 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))) ↔ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣))))
2413, 23anbi12d 632 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐺)) → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)))))
252, 12, 24spcedv 3598 . 2 (𝐺 ∈ UHGraph → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣)))))
263, 3dfgrlic2 47904 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2726anidms 566 . 2 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝐺 ↔ ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑣))))))
2825, 27mpbird 257 1 (𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148   I cid 5582  cres 5691  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  UHGraphcuhgr 29088   ClNeighbVtx cclnbgr 47743   ISubGr cisubgr 47784  𝑔𝑟 cgric 47800  𝑙𝑔𝑟 cgrlic 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-vtx 29030  df-iedg 29031  df-uhgr 29090  df-clnbgr 47744  df-isubgr 47785  df-grim 47802  df-gric 47805  df-grlim 47881  df-grlic 47884
This theorem is referenced by:  grlicer  47912
  Copyright terms: Public domain W3C validator