![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrisubgrgrim | Structured version Visualization version GIF version |
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
Ref | Expression |
---|---|
clnbgrisubgrgrim.i | ⊢ 𝐼 = (iEdg‘𝐺) |
clnbgrisubgrgrim.j | ⊢ 𝐽 = (iEdg‘𝐻) |
clnbgrisubgrgrim.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
clnbgrisubgrgrim.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) |
clnbgrisubgrgrim.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
clnbgrisubgrgrim.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
Ref | Expression |
---|---|
clnbgrisubgrgrim | ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbgrisubgrgrim.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) | |
2 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 2 | clnbgrssvtx 47756 | . . 3 ⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ (Vtx‘𝐺) |
4 | 1, 3 | eqsstri 4030 | . 2 ⊢ 𝑁 ⊆ (Vtx‘𝐺) |
5 | clnbgrisubgrgrim.m | . . 3 ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) | |
6 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
7 | 6 | clnbgrssvtx 47756 | . . 3 ⊢ (𝐻 ClNeighbVtx 𝑌) ⊆ (Vtx‘𝐻) |
8 | 5, 7 | eqsstri 4030 | . 2 ⊢ 𝑀 ⊆ (Vtx‘𝐻) |
9 | clnbgrisubgrgrim.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
10 | clnbgrisubgrgrim.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
11 | clnbgrisubgrgrim.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
12 | clnbgrisubgrgrim.l | . . 3 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
13 | 2, 6, 9, 10, 11, 12 | isubgrgrim 47835 | . 2 ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ (Vtx‘𝐺) ∧ 𝑀 ⊆ (Vtx‘𝐻))) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
14 | 4, 8, 13 | mpanr12 705 | 1 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 class class class wbr 5148 dom cdm 5689 “ cima 5692 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 Vtxcvtx 29028 iEdgciedg 29029 ClNeighbVtx cclnbgr 47743 ISubGr cisubgr 47784 ≃𝑔𝑟 cgric 47800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-1o 8505 df-map 8867 df-vtx 29030 df-iedg 29031 df-clnbgr 47744 df-isubgr 47785 df-grim 47802 df-gric 47805 |
This theorem is referenced by: isgrlim2 47886 |
Copyright terms: Public domain | W3C validator |