Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrisubgrgrim Structured version   Visualization version   GIF version

Theorem clnbgrisubgrgrim 47838
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
clnbgrisubgrgrim.i 𝐼 = (iEdg‘𝐺)
clnbgrisubgrgrim.j 𝐽 = (iEdg‘𝐻)
clnbgrisubgrgrim.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
clnbgrisubgrgrim.m 𝑀 = (𝐻 ClNeighbVtx 𝑌)
clnbgrisubgrgrim.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
clnbgrisubgrgrim.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
clnbgrisubgrgrim ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑓,𝐺,𝑔,𝑖   𝑥,𝐺   𝑓,𝐻,𝑔,𝑖   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑇,𝑓,𝑔,𝑖   𝑈,𝑓,𝑔,𝑖   𝑖,𝐾   𝑖,𝐿
Allowed substitution hints:   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑓,𝑔,𝑖)   𝐽(𝑓,𝑔,𝑖)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)   𝑋(𝑥,𝑓,𝑔,𝑖)   𝑌(𝑥,𝑓,𝑔,𝑖)

Proof of Theorem clnbgrisubgrgrim
StepHypRef Expression
1 clnbgrisubgrgrim.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
2 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
32clnbgrssvtx 47756 . . 3 (𝐺 ClNeighbVtx 𝑋) ⊆ (Vtx‘𝐺)
41, 3eqsstri 4030 . 2 𝑁 ⊆ (Vtx‘𝐺)
5 clnbgrisubgrgrim.m . . 3 𝑀 = (𝐻 ClNeighbVtx 𝑌)
6 eqid 2735 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
76clnbgrssvtx 47756 . . 3 (𝐻 ClNeighbVtx 𝑌) ⊆ (Vtx‘𝐻)
85, 7eqsstri 4030 . 2 𝑀 ⊆ (Vtx‘𝐻)
9 clnbgrisubgrgrim.i . . 3 𝐼 = (iEdg‘𝐺)
10 clnbgrisubgrgrim.j . . 3 𝐽 = (iEdg‘𝐻)
11 clnbgrisubgrgrim.k . . 3 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
12 clnbgrisubgrgrim.l . . 3 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
132, 6, 9, 10, 11, 12isubgrgrim 47835 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁 ⊆ (Vtx‘𝐺) ∧ 𝑀 ⊆ (Vtx‘𝐻))) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
144, 8, 13mpanr12 705 1 ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  {crab 3433  wss 3963   class class class wbr 5148  dom cdm 5689  cima 5692  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  iEdgciedg 29029   ClNeighbVtx cclnbgr 47743   ISubGr cisubgr 47784  𝑔𝑟 cgric 47800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-vtx 29030  df-iedg 29031  df-clnbgr 47744  df-isubgr 47785  df-grim 47802  df-gric 47805
This theorem is referenced by:  isgrlim2  47886
  Copyright terms: Public domain W3C validator