Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrisubgrgrim Structured version   Visualization version   GIF version

Theorem clnbgrisubgrgrim 47963
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
clnbgrisubgrgrim.i 𝐼 = (iEdg‘𝐺)
clnbgrisubgrgrim.j 𝐽 = (iEdg‘𝐻)
clnbgrisubgrgrim.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
clnbgrisubgrgrim.m 𝑀 = (𝐻 ClNeighbVtx 𝑌)
clnbgrisubgrgrim.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
clnbgrisubgrgrim.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
clnbgrisubgrgrim ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑓,𝐺,𝑔,𝑖   𝑥,𝐺   𝑓,𝐻,𝑔,𝑖   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑇,𝑓,𝑔,𝑖   𝑈,𝑓,𝑔,𝑖   𝑖,𝐾   𝑖,𝐿
Allowed substitution hints:   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑓,𝑔,𝑖)   𝐽(𝑓,𝑔,𝑖)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)   𝑋(𝑥,𝑓,𝑔,𝑖)   𝑌(𝑥,𝑓,𝑔,𝑖)

Proof of Theorem clnbgrisubgrgrim
StepHypRef Expression
1 clnbgrisubgrgrim.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
2 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
32clnbgrssvtx 47862 . . 3 (𝐺 ClNeighbVtx 𝑋) ⊆ (Vtx‘𝐺)
41, 3eqsstri 3976 . 2 𝑁 ⊆ (Vtx‘𝐺)
5 clnbgrisubgrgrim.m . . 3 𝑀 = (𝐻 ClNeighbVtx 𝑌)
6 eqid 2731 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
76clnbgrssvtx 47862 . . 3 (𝐻 ClNeighbVtx 𝑌) ⊆ (Vtx‘𝐻)
85, 7eqsstri 3976 . 2 𝑀 ⊆ (Vtx‘𝐻)
9 clnbgrisubgrgrim.i . . 3 𝐼 = (iEdg‘𝐺)
10 clnbgrisubgrgrim.j . . 3 𝐽 = (iEdg‘𝐻)
11 clnbgrisubgrgrim.k . . 3 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
12 clnbgrisubgrgrim.l . . 3 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
132, 6, 9, 10, 11, 12isubgrgrim 47960 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁 ⊆ (Vtx‘𝐺) ∧ 𝑀 ⊆ (Vtx‘𝐻))) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
144, 8, 13mpanr12 705 1 ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  {crab 3395  wss 3897   class class class wbr 5086  dom cdm 5611  cima 5614  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  Vtxcvtx 28969  iEdgciedg 28970   ClNeighbVtx cclnbgr 47849   ISubGr cisubgr 47891  𝑔𝑟 cgric 47907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-map 8747  df-vtx 28971  df-iedg 28972  df-clnbgr 47850  df-isubgr 47892  df-grim 47909  df-gric 47912
This theorem is referenced by:  isgrlim2  48014
  Copyright terms: Public domain W3C validator