| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrisubgrgrim | Structured version Visualization version GIF version | ||
| Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrisubgrgrim.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| clnbgrisubgrgrim.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| clnbgrisubgrgrim.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
| clnbgrisubgrgrim.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) |
| clnbgrisubgrgrim.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| clnbgrisubgrgrim.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| clnbgrisubgrgrim | ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrisubgrgrim.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | 2 | clnbgrssvtx 47812 | . . 3 ⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ (Vtx‘𝐺) |
| 4 | 1, 3 | eqsstri 4010 | . 2 ⊢ 𝑁 ⊆ (Vtx‘𝐺) |
| 5 | clnbgrisubgrgrim.m | . . 3 ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) | |
| 6 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 7 | 6 | clnbgrssvtx 47812 | . . 3 ⊢ (𝐻 ClNeighbVtx 𝑌) ⊆ (Vtx‘𝐻) |
| 8 | 5, 7 | eqsstri 4010 | . 2 ⊢ 𝑀 ⊆ (Vtx‘𝐻) |
| 9 | clnbgrisubgrgrim.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | clnbgrisubgrgrim.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 11 | clnbgrisubgrgrim.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 12 | clnbgrisubgrgrim.l | . . 3 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 13 | 2, 6, 9, 10, 11, 12 | isubgrgrim 47909 | . 2 ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ (Vtx‘𝐺) ∧ 𝑀 ⊆ (Vtx‘𝐻))) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 14 | 4, 8, 13 | mpanr12 705 | 1 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 “ cima 5662 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 Vtxcvtx 28980 iEdgciedg 28981 ClNeighbVtx cclnbgr 47799 ISubGr cisubgr 47840 ≃𝑔𝑟 cgric 47856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-1o 8485 df-map 8847 df-vtx 28982 df-iedg 28983 df-clnbgr 47800 df-isubgr 47841 df-grim 47858 df-gric 47861 |
| This theorem is referenced by: isgrlim2 47962 |
| Copyright terms: Public domain | W3C validator |