Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrisubgrgrim Structured version   Visualization version   GIF version

Theorem clnbgrisubgrgrim 47784
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
clnbgrisubgrgrim.i 𝐼 = (iEdg‘𝐺)
clnbgrisubgrgrim.j 𝐽 = (iEdg‘𝐻)
clnbgrisubgrgrim.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
clnbgrisubgrgrim.m 𝑀 = (𝐻 ClNeighbVtx 𝑌)
clnbgrisubgrgrim.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
clnbgrisubgrgrim.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
clnbgrisubgrgrim ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑓,𝐺,𝑔,𝑖   𝑥,𝐺   𝑓,𝐻,𝑔,𝑖   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑇,𝑓,𝑔,𝑖   𝑈,𝑓,𝑔,𝑖   𝑖,𝐾   𝑖,𝐿
Allowed substitution hints:   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑓,𝑔,𝑖)   𝐽(𝑓,𝑔,𝑖)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)   𝑋(𝑥,𝑓,𝑔,𝑖)   𝑌(𝑥,𝑓,𝑔,𝑖)

Proof of Theorem clnbgrisubgrgrim
StepHypRef Expression
1 clnbgrisubgrgrim.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
2 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
32clnbgrssvtx 47704 . . 3 (𝐺 ClNeighbVtx 𝑋) ⊆ (Vtx‘𝐺)
41, 3eqsstri 4043 . 2 𝑁 ⊆ (Vtx‘𝐺)
5 clnbgrisubgrgrim.m . . 3 𝑀 = (𝐻 ClNeighbVtx 𝑌)
6 eqid 2740 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
76clnbgrssvtx 47704 . . 3 (𝐻 ClNeighbVtx 𝑌) ⊆ (Vtx‘𝐻)
85, 7eqsstri 4043 . 2 𝑀 ⊆ (Vtx‘𝐻)
9 clnbgrisubgrgrim.i . . 3 𝐼 = (iEdg‘𝐺)
10 clnbgrisubgrgrim.j . . 3 𝐽 = (iEdg‘𝐻)
11 clnbgrisubgrgrim.k . . 3 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
12 clnbgrisubgrgrim.l . . 3 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
132, 6, 9, 10, 11, 12isubgrgrim 47781 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁 ⊆ (Vtx‘𝐺) ∧ 𝑀 ⊆ (Vtx‘𝐻))) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
144, 8, 13mpanr12 704 1 ((𝐺𝑈𝐻𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  wss 3976   class class class wbr 5166  dom cdm 5700  cima 5703  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032   ClNeighbVtx cclnbgr 47692   ISubGr cisubgr 47732  𝑔𝑟 cgric 47746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-clnbgr 47693  df-isubgr 47733  df-grim 47748  df-gric 47751
This theorem is referenced by:  isgrlim2  47807
  Copyright terms: Public domain W3C validator