Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimgrlim Structured version   Visualization version   GIF version

Theorem uhgrimgrlim 47889
Description: An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025.)
Assertion
Ref Expression
uhgrimgrlim ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))

Proof of Theorem uhgrimgrlim
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2734 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
31, 2grimf1o 47807 . . 3 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
433ad2ant3 1134 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 simpl1 1190 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐺 ∈ UHGraph)
6 simpl3 1192 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
71clnbgrssvtx 47755 . . . . . 6 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
87a1i 11 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
91uhgrimisgrgric 47836 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
105, 6, 8, 9syl3anc 1370 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
11 df-3an 1088 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ↔ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
121clnbgrgrim 47839 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))
1311, 12sylanb 581 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))
1413oveq2d 7446 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) = (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
1510, 14breqtrrd 5175 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))
1615ralrimiva 3143 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))
171, 2isgrlim 47884 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))))
184, 16, 17mpbir2and 713 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wss 3962   class class class wbr 5147  cima 5691  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  Vtxcvtx 29027  UHGraphcuhgr 29087   ClNeighbVtx cclnbgr 47742   ISubGr cisubgr 47783   GraphIso cgrim 47798  𝑔𝑟 cgric 47799   GraphLocIso cgrlim 47878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-1o 8504  df-map 8866  df-vtx 29029  df-iedg 29030  df-edg 29079  df-uhgr 29089  df-clnbgr 47743  df-isubgr 47784  df-grim 47801  df-gric 47804  df-grlim 47880
This theorem is referenced by:  gricgrlic  47913
  Copyright terms: Public domain W3C validator