Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2740 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
3 | 1, 2 | grimf1o 47754 |
. . 3
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
4 | 3 | 3ad2ant3 1135 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
5 | | simpl1 1191 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐺 ∈ UHGraph) |
6 | | simpl3 1193 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
7 | 1 | clnbgrssvtx 47704 |
. . . . . 6
⊢ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) |
9 | 1 | uhgrimisgrgric 47783 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))) |
10 | 5, 6, 8, 9 | syl3anc 1371 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))) |
11 | | df-3an 1089 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ↔ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
12 | 1 | clnbgrgrim 47786 |
. . . . . 6
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣))) |
13 | 11, 12 | sylanb 580 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣))) |
14 | 13 | oveq2d 7464 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) = (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))) |
15 | 10, 14 | breqtrrd 5194 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))) |
16 | 15 | ralrimiva 3152 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))) |
17 | 1, 2 | isgrlim 47806 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) |
18 | 4, 16, 17 | mpbir2and 712 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) |