Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimgrlim Structured version   Visualization version   GIF version

Theorem uhgrimgrlim 47966
Description: An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025.)
Assertion
Ref Expression
uhgrimgrlim ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))

Proof of Theorem uhgrimgrlim
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2736 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
31, 2grimf1o 47864 . . 3 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
433ad2ant3 1135 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 simpl1 1192 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐺 ∈ UHGraph)
6 simpl3 1194 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
71clnbgrssvtx 47812 . . . . . 6 (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)
87a1i 11 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺))
91uhgrimisgrgric 47911 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ClNeighbVtx 𝑣) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
105, 6, 8, 9syl3anc 1373 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
11 df-3an 1088 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ↔ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
121clnbgrgrim 47914 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))
1311, 12sylanb 581 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑣)))
1413oveq2d 7426 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) = (𝐻 ISubGr (𝐹 “ (𝐺 ClNeighbVtx 𝑣))))
1510, 14breqtrrd 5152 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))
1615ralrimiva 3133 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))
171, 2isgrlim 47961 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))))
184, 16, 17mpbir2and 713 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  cima 5662  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  UHGraphcuhgr 29040   ClNeighbVtx cclnbgr 47799   ISubGr cisubgr 47840   GraphIso cgrim 47855  𝑔𝑟 cgric 47856   GraphLocIso cgrlim 47955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-1o 8485  df-map 8847  df-vtx 28982  df-iedg 28983  df-edg 29032  df-uhgr 29042  df-clnbgr 47800  df-isubgr 47841  df-grim 47858  df-gric 47861  df-grlim 47957
This theorem is referenced by:  gricgrlic  47990
  Copyright terms: Public domain W3C validator