Step | Hyp | Ref
| Expression |
1 | | eqid 2726 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2726 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
3 | 1, 2 | grilcbri 47535 |
. . 3
⊢ (𝐺
≃𝑙𝑔𝑟 𝑆 → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))))) |
4 | | grlicrcl 47533 |
. . 3
⊢ (𝐺
≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
5 | | vex 3466 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
6 | | cnvexg 7929 |
. . . . . . . . . 10
⊢ (𝑓 ∈ V → ◡𝑓 ∈ V) |
7 | 5, 6 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → ◡𝑓 ∈ V) |
8 | | f1ocnv 6847 |
. . . . . . . . . . 11
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → ◡𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺)) |
9 | 8 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → ◡𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺)) |
10 | | f1ocnvdm 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (◡𝑓‘𝑤) ∈ (Vtx‘𝐺)) |
11 | 10 | 3adant3 1129 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (◡𝑓‘𝑤) ∈ (Vtx‘𝐺)) |
12 | | oveq2 7424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = (◡𝑓‘𝑤) → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) |
13 | 12 | oveq2d 7432 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (◡𝑓‘𝑤) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤)))) |
14 | | fveq2 6893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = (◡𝑓‘𝑤) → (𝑓‘𝑣) = (𝑓‘(◡𝑓‘𝑤))) |
15 | 14 | oveq2d 7432 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = (◡𝑓‘𝑤) → (𝑆 ClNeighbVtx (𝑓‘𝑣)) = (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))) |
16 | 15 | oveq2d 7432 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (◡𝑓‘𝑤) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤))))) |
17 | 13, 16 | breq12d 5158 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (◡𝑓‘𝑤) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))))) |
18 | 17 | rspcv 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑓‘𝑤) ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))))) |
19 | 11, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))))) |
20 | | f1ocnvfv2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓‘(◡𝑓‘𝑤)) = 𝑤) |
21 | 20 | 3adant3 1129 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓‘(◡𝑓‘𝑤)) = 𝑤) |
22 | 21 | oveq2d 7432 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤))) = (𝑆 ClNeighbVtx 𝑤)) |
23 | 22 | oveq2d 7432 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))) = (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤))) |
24 | 23 | breq2d 5157 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)))) |
25 | | simp3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → 𝐺 ∈ UHGraph) |
26 | 1 | clnbgrssvtx 47438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ClNeighbVtx (◡𝑓‘𝑤)) ⊆ (Vtx‘𝐺) |
27 | 1 | isubgruhgr 47469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx (◡𝑓‘𝑤)) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ∈ UHGraph) |
28 | 25, 26, 27 | sylancl 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ∈ UHGraph) |
29 | | gricsym 47505 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ∈ UHGraph → ((𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
31 | 24, 30 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(◡𝑓‘𝑤)))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
32 | 19, 31 | syld 47 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
33 | 32 | 3exp 1116 |
. . . . . . . . . . . . 13
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (𝑤 ∈ (Vtx‘𝑆) → (𝐺 ∈ UHGraph → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))))) |
34 | 33 | com24 95 |
. . . . . . . . . . . 12
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣))) → (𝐺 ∈ UHGraph → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))))) |
35 | 34 | imp31 416 |
. . . . . . . . . . 11
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
36 | 35 | ralrimiv 3135 |
. . . . . . . . . 10
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤)))) |
37 | 9, 36 | jca 510 |
. . . . . . . . 9
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → (◡𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
38 | | f1oeq1 6823 |
. . . . . . . . . 10
⊢ (𝑔 = ◡𝑓 → (𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ↔ ◡𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))) |
39 | | fveq1 6892 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = ◡𝑓 → (𝑔‘𝑤) = (◡𝑓‘𝑤)) |
40 | 39 | oveq2d 7432 |
. . . . . . . . . . . . 13
⊢ (𝑔 = ◡𝑓 → (𝐺 ClNeighbVtx (𝑔‘𝑤)) = (𝐺 ClNeighbVtx (◡𝑓‘𝑤))) |
41 | 40 | oveq2d 7432 |
. . . . . . . . . . . 12
⊢ (𝑔 = ◡𝑓 → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤)))) |
42 | 41 | breq2d 5157 |
. . . . . . . . . . 11
⊢ (𝑔 = ◡𝑓 → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
43 | 42 | ralbidv 3168 |
. . . . . . . . . 10
⊢ (𝑔 = ◡𝑓 → (∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤))) ↔ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤))))) |
44 | 38, 43 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = ◡𝑓 → ((𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤)))) ↔ (◡𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (◡𝑓‘𝑤)))))) |
45 | 7, 37, 44 | spcedv 3583 |
. . . . . . . 8
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤))))) |
46 | 45 | 3adant3 1129 |
. . . . . . 7
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤))))) |
47 | 2, 1 | dfgrlic2 47534 |
. . . . . . . . 9
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆
≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤)))))) |
48 | 47 | ancoms 457 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆
≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤)))))) |
49 | 48 | 3ad2ant3 1132 |
. . . . . . 7
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → (𝑆
≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟
(𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔‘𝑤)))))) |
50 | 46, 49 | mpbird 256 |
. . . . . 6
⊢ (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → 𝑆
≃𝑙𝑔𝑟 𝐺) |
51 | 50 | 3exp 1116 |
. . . . 5
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) → (𝐺 ∈ UHGraph → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑆
≃𝑙𝑔𝑟 𝐺))) |
52 | 51 | com23 86 |
. . . 4
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆
≃𝑙𝑔𝑟 𝐺))) |
53 | 52 | exlimiv 1926 |
. . 3
⊢
(∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆
≃𝑙𝑔𝑟 𝐺))) |
54 | 3, 4, 53 | sylc 65 |
. 2
⊢ (𝐺
≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ UHGraph → 𝑆
≃𝑙𝑔𝑟 𝐺)) |
55 | 54 | com12 32 |
1
⊢ (𝐺 ∈ UHGraph → (𝐺
≃𝑙𝑔𝑟 𝑆 → 𝑆
≃𝑙𝑔𝑟 𝐺)) |