Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicsym Structured version   Visualization version   GIF version

Theorem grlicsym 48009
Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicsym (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))

Proof of Theorem grlicsym
Dummy variables 𝑓 𝑣 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2730 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
31, 2grilcbri 48005 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))))
4 grlicrcl 48003 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
5 vex 3454 . . . . . . . . . 10 𝑓 ∈ V
6 cnvexg 7903 . . . . . . . . . 10 (𝑓 ∈ V → 𝑓 ∈ V)
75, 6mp1i 13 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓 ∈ V)
8 f1ocnv 6815 . . . . . . . . . . 11 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
98ad2antrr 726 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
10 f1ocnvdm 7263 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓𝑤) ∈ (Vtx‘𝐺))
11103adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓𝑤) ∈ (Vtx‘𝐺))
12 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx (𝑓𝑤)))
1312oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
14 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝑓𝑤) → (𝑓𝑣) = (𝑓‘(𝑓𝑤)))
1514oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝑆 ClNeighbVtx (𝑓𝑣)) = (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))
1615oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))))
1713, 16breq12d 5123 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑓𝑤) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1817rspcv 3587 . . . . . . . . . . . . . . . 16 ((𝑓𝑤) ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1911, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
20 f1ocnvfv2 7255 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓‘(𝑓𝑤)) = 𝑤)
21203adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓‘(𝑓𝑤)) = 𝑤)
2221oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))) = (𝑆 ClNeighbVtx 𝑤))
2322oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) = (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)))
2423breq2d 5122 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤))))
25 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → 𝐺 ∈ UHGraph)
261clnbgrssvtx 47836 . . . . . . . . . . . . . . . . . 18 (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)
271isubgruhgr 47872 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
2825, 26, 27sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
29 gricsym 47925 . . . . . . . . . . . . . . . . 17 ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3124, 30sylbid 240 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3219, 31syld 47 . . . . . . . . . . . . . 14 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
33323exp 1119 . . . . . . . . . . . . 13 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (𝑤 ∈ (Vtx‘𝑆) → (𝐺 ∈ UHGraph → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3433com24 95 . . . . . . . . . . . 12 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ∈ UHGraph → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3534imp31 417 . . . . . . . . . . 11 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3635ralrimiv 3125 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
379, 36jca 511 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
38 f1oeq1 6791 . . . . . . . . . 10 (𝑔 = 𝑓 → (𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ↔ 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺)))
39 fveq1 6860 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔𝑤) = (𝑓𝑤))
4039oveq2d 7406 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝐺 ClNeighbVtx (𝑔𝑤)) = (𝐺 ClNeighbVtx (𝑓𝑤)))
4140oveq2d 7406 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
4241breq2d 5122 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4342ralbidv 3157 . . . . . . . . . 10 (𝑔 = 𝑓 → (∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4438, 43anbi12d 632 . . . . . . . . 9 (𝑔 = 𝑓 → ((𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))) ↔ (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))))
457, 37, 44spcedv 3567 . . . . . . . 8 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
46453adant3 1132 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
472, 1dfgrlic2 48004 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
4847ancoms 458 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
49483ad2ant3 1135 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
5046, 49mpbird 257 . . . . . 6 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → 𝑆𝑙𝑔𝑟 𝐺)
51503exp 1119 . . . . 5 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → (𝐺 ∈ UHGraph → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑆𝑙𝑔𝑟 𝐺)))
5251com23 86 . . . 4 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
5352exlimiv 1930 . . 3 (∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
543, 4, 53sylc 65 . 2 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺))
5554com12 32 1 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  wss 3917   class class class wbr 5110  ccnv 5640  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  UHGraphcuhgr 28990   ClNeighbVtx cclnbgr 47823   ISubGr cisubgr 47864  𝑔𝑟 cgric 47880  𝑙𝑔𝑟 cgrlic 47980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-vtx 28932  df-iedg 28933  df-uhgr 28992  df-clnbgr 47824  df-isubgr 47865  df-grim 47882  df-gric 47885  df-grlim 47981  df-grlic 47984
This theorem is referenced by:  grlicsymb  48010  grlicer  48012  usgrexmpl12ngrlic  48034
  Copyright terms: Public domain W3C validator