Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicsym Structured version   Visualization version   GIF version

Theorem grlicsym 47830
Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicsym (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))

Proof of Theorem grlicsym
Dummy variables 𝑓 𝑣 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2740 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
31, 2grilcbri 47826 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))))
4 grlicrcl 47824 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
5 vex 3492 . . . . . . . . . 10 𝑓 ∈ V
6 cnvexg 7964 . . . . . . . . . 10 (𝑓 ∈ V → 𝑓 ∈ V)
75, 6mp1i 13 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓 ∈ V)
8 f1ocnv 6874 . . . . . . . . . . 11 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
98ad2antrr 725 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
10 f1ocnvdm 7321 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓𝑤) ∈ (Vtx‘𝐺))
11103adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓𝑤) ∈ (Vtx‘𝐺))
12 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx (𝑓𝑤)))
1312oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
14 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝑓𝑤) → (𝑓𝑣) = (𝑓‘(𝑓𝑤)))
1514oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝑆 ClNeighbVtx (𝑓𝑣)) = (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))
1615oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))))
1713, 16breq12d 5179 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑓𝑤) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1817rspcv 3631 . . . . . . . . . . . . . . . 16 ((𝑓𝑤) ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1911, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
20 f1ocnvfv2 7313 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓‘(𝑓𝑤)) = 𝑤)
21203adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓‘(𝑓𝑤)) = 𝑤)
2221oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))) = (𝑆 ClNeighbVtx 𝑤))
2322oveq2d 7464 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) = (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)))
2423breq2d 5178 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤))))
25 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → 𝐺 ∈ UHGraph)
261clnbgrssvtx 47704 . . . . . . . . . . . . . . . . . 18 (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)
271isubgruhgr 47738 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
2825, 26, 27sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
29 gricsym 47774 . . . . . . . . . . . . . . . . 17 ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3124, 30sylbid 240 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3219, 31syld 47 . . . . . . . . . . . . . 14 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
33323exp 1119 . . . . . . . . . . . . 13 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (𝑤 ∈ (Vtx‘𝑆) → (𝐺 ∈ UHGraph → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3433com24 95 . . . . . . . . . . . 12 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ∈ UHGraph → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3534imp31 417 . . . . . . . . . . 11 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3635ralrimiv 3151 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
379, 36jca 511 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
38 f1oeq1 6850 . . . . . . . . . 10 (𝑔 = 𝑓 → (𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ↔ 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺)))
39 fveq1 6919 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔𝑤) = (𝑓𝑤))
4039oveq2d 7464 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝐺 ClNeighbVtx (𝑔𝑤)) = (𝐺 ClNeighbVtx (𝑓𝑤)))
4140oveq2d 7464 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
4241breq2d 5178 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4342ralbidv 3184 . . . . . . . . . 10 (𝑔 = 𝑓 → (∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4438, 43anbi12d 631 . . . . . . . . 9 (𝑔 = 𝑓 → ((𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))) ↔ (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))))
457, 37, 44spcedv 3611 . . . . . . . 8 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
46453adant3 1132 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
472, 1dfgrlic2 47825 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
4847ancoms 458 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
49483ad2ant3 1135 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
5046, 49mpbird 257 . . . . . 6 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → 𝑆𝑙𝑔𝑟 𝐺)
51503exp 1119 . . . . 5 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → (𝐺 ∈ UHGraph → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑆𝑙𝑔𝑟 𝐺)))
5251com23 86 . . . 4 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
5352exlimiv 1929 . . 3 (∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
543, 4, 53sylc 65 . 2 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺))
5554com12 32 1 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  UHGraphcuhgr 29091   ClNeighbVtx cclnbgr 47692   ISubGr cisubgr 47732  𝑔𝑟 cgric 47746  𝑙𝑔𝑟 cgrlic 47801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-uhgr 29093  df-clnbgr 47693  df-isubgr 47733  df-grim 47748  df-gric 47751  df-grlim 47802  df-grlic 47805
This theorem is referenced by:  grlicsymb  47831  grlicer  47833  usgrexmpl12ngrlic  47854
  Copyright terms: Public domain W3C validator