Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicsym Structured version   Visualization version   GIF version

Theorem grlicsym 47539
Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicsym (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))

Proof of Theorem grlicsym
Dummy variables 𝑓 𝑣 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2726 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
31, 2grilcbri 47535 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → ∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))))
4 grlicrcl 47533 . . 3 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
5 vex 3466 . . . . . . . . . 10 𝑓 ∈ V
6 cnvexg 7929 . . . . . . . . . 10 (𝑓 ∈ V → 𝑓 ∈ V)
75, 6mp1i 13 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓 ∈ V)
8 f1ocnv 6847 . . . . . . . . . . 11 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
98ad2antrr 724 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺))
10 f1ocnvdm 7291 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓𝑤) ∈ (Vtx‘𝐺))
11103adant3 1129 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓𝑤) ∈ (Vtx‘𝐺))
12 oveq2 7424 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx (𝑓𝑤)))
1312oveq2d 7432 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
14 fveq2 6893 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝑓𝑤) → (𝑓𝑣) = (𝑓‘(𝑓𝑤)))
1514oveq2d 7432 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝑓𝑤) → (𝑆 ClNeighbVtx (𝑓𝑣)) = (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))
1615oveq2d 7432 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑓𝑤) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))))
1713, 16breq12d 5158 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑓𝑤) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1817rspcv 3603 . . . . . . . . . . . . . . . 16 ((𝑓𝑤) ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
1911, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))))))
20 f1ocnvfv2 7283 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆)) → (𝑓‘(𝑓𝑤)) = 𝑤)
21203adant3 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑓‘(𝑓𝑤)) = 𝑤)
2221oveq2d 7432 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤))) = (𝑆 ClNeighbVtx 𝑤))
2322oveq2d 7432 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) = (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)))
2423breq2d 5157 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) ↔ (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤))))
25 simp3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → 𝐺 ∈ UHGraph)
261clnbgrssvtx 47438 . . . . . . . . . . . . . . . . . 18 (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)
271isubgruhgr 47469 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ (𝐺 ClNeighbVtx (𝑓𝑤)) ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
2825, 26, 27sylancl 584 . . . . . . . . . . . . . . . . 17 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph)
29 gricsym 47505 . . . . . . . . . . . . . . . . 17 ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ∈ UHGraph → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3124, 30sylbid 239 . . . . . . . . . . . . . . 15 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → ((𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓‘(𝑓𝑤)))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3219, 31syld 47 . . . . . . . . . . . . . 14 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ 𝑤 ∈ (Vtx‘𝑆) ∧ 𝐺 ∈ UHGraph) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
33323exp 1116 . . . . . . . . . . . . 13 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (𝑤 ∈ (Vtx‘𝑆) → (𝐺 ∈ UHGraph → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3433com24 95 . . . . . . . . . . . 12 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣))) → (𝐺 ∈ UHGraph → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))))
3534imp31 416 . . . . . . . . . . 11 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑤 ∈ (Vtx‘𝑆) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
3635ralrimiv 3135 . . . . . . . . . 10 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
379, 36jca 510 . . . . . . . . 9 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
38 f1oeq1 6823 . . . . . . . . . 10 (𝑔 = 𝑓 → (𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ↔ 𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺)))
39 fveq1 6892 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔𝑤) = (𝑓𝑤))
4039oveq2d 7432 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝐺 ClNeighbVtx (𝑔𝑤)) = (𝐺 ClNeighbVtx (𝑓𝑤)))
4140oveq2d 7432 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) = (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))
4241breq2d 5157 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4342ralbidv 3168 . . . . . . . . . 10 (𝑔 = 𝑓 → (∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))) ↔ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤)))))
4438, 43anbi12d 630 . . . . . . . . 9 (𝑔 = 𝑓 → ((𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))) ↔ (𝑓:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑓𝑤))))))
457, 37, 44spcedv 3583 . . . . . . . 8 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
46453adant3 1129 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤)))))
472, 1dfgrlic2 47534 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
4847ancoms 457 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
49483ad2ant3 1132 . . . . . . 7 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → (𝑆𝑙𝑔𝑟 𝐺 ↔ ∃𝑔(𝑔:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝐺) ∧ ∀𝑤 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑤)) ≃𝑔𝑟 (𝐺 ISubGr (𝐺 ClNeighbVtx (𝑔𝑤))))))
5046, 49mpbird 256 . . . . . 6 (((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) ∧ 𝐺 ∈ UHGraph ∧ (𝐺 ∈ V ∧ 𝑆 ∈ V)) → 𝑆𝑙𝑔𝑟 𝐺)
51503exp 1116 . . . . 5 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → (𝐺 ∈ UHGraph → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑆𝑙𝑔𝑟 𝐺)))
5251com23 86 . . . 4 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
5352exlimiv 1926 . . 3 (∃𝑓(𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑓𝑣)))) → ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺)))
543, 4, 53sylc 65 . 2 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ UHGraph → 𝑆𝑙𝑔𝑟 𝐺))
5554com12 32 1 (𝐺 ∈ UHGraph → (𝐺𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wral 3051  Vcvv 3462  wss 3946   class class class wbr 5145  ccnv 5673  1-1-ontowf1o 6545  cfv 6546  (class class class)co 7416  Vtxcvtx 28929  UHGraphcuhgr 28989   ClNeighbVtx cclnbgr 47426   ISubGr cisubgr 47463  𝑔𝑟 cgric 47477  𝑙𝑔𝑟 cgrlic 47519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-1o 8488  df-map 8849  df-vtx 28931  df-iedg 28932  df-uhgr 28991  df-clnbgr 47427  df-isubgr 47464  df-grim 47479  df-gric 47482  df-grlim 47520  df-grlic 47523
This theorem is referenced by:  grlicsymb  47540  grlicer  47542
  Copyright terms: Public domain W3C validator