![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnptop1 | Structured version Visualization version GIF version |
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnptop1 | ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2797 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscnp2 21369 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
4 | 3 | simplbi 492 | . 2 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)) |
5 | 4 | simp1d 1173 | 1 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ⊆ wss 3767 ∪ cuni 4626 “ cima 5313 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 Topctop 21023 CnP ccnp 21355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-map 8095 df-top 21024 df-topon 21041 df-cnp 21358 |
This theorem is referenced by: cnpco 21397 cncnp2 21411 cnpresti 21418 cnprest2 21420 lmcnp 21434 |
Copyright terms: Public domain | W3C validator |