| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2731 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23153 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 (class class class)co 7346 Topctop 22808 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: cnco 23181 cncls2i 23185 cnntri 23186 cnss1 23191 cncnpi 23193 cncnp2 23196 cnrest 23200 cnrest2r 23202 paste 23209 cncmp 23307 rncmp 23311 cnconn 23337 connima 23340 conncn 23341 2ndcomap 23373 kgen2cn 23474 txcnmpt 23539 uptx 23540 lmcn2 23564 xkoco1cn 23572 xkoco2cn 23573 xkococnlem 23574 cnmpt11 23578 cnmpt11f 23579 cnmpt1t 23580 cnmpt12 23582 cnmpt21 23586 cnmpt2t 23588 cnmpt22 23589 cnmpt22f 23590 cnmptcom 23593 cnmpt2k 23603 qtopeu 23631 hmeofval 23673 hmeof1o 23679 hmeontr 23684 hmeores 23686 hmeoqtop 23690 hmphen 23700 reghmph 23708 nrmhmph 23709 txhmeo 23718 xpstopnlem1 23724 flfcntr 23958 cnmpopc 24849 ishtpy 24898 htpyco1 24904 htpyco2 24905 isphtpy 24907 phtpyco2 24916 isphtpc 24920 pcofval 24937 pcopt 24949 pcopt2 24950 pcorevlem 24953 pi1cof 24986 pi1coghm 24988 cnmbfm 34276 cnpconn 35274 cnneiima 49027 |
| Copyright terms: Public domain | W3C validator |