| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23125 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4871 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 (class class class)co 7387 Topctop 22780 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: cnco 23153 cncls2i 23157 cnntri 23158 cnss1 23163 cncnpi 23165 cncnp2 23168 cnrest 23172 cnrest2r 23174 paste 23181 cncmp 23279 rncmp 23283 cnconn 23309 connima 23312 conncn 23313 2ndcomap 23345 kgen2cn 23446 txcnmpt 23511 uptx 23512 lmcn2 23536 xkoco1cn 23544 xkoco2cn 23545 xkococnlem 23546 cnmpt11 23550 cnmpt11f 23551 cnmpt1t 23552 cnmpt12 23554 cnmpt21 23558 cnmpt2t 23560 cnmpt22 23561 cnmpt22f 23562 cnmptcom 23565 cnmpt2k 23575 qtopeu 23603 hmeofval 23645 hmeof1o 23651 hmeontr 23656 hmeores 23658 hmeoqtop 23662 hmphen 23672 reghmph 23680 nrmhmph 23681 txhmeo 23690 xpstopnlem1 23696 flfcntr 23930 cnmpopc 24822 ishtpy 24871 htpyco1 24877 htpyco2 24878 isphtpy 24880 phtpyco2 24889 isphtpc 24893 pcofval 24910 pcopt 24922 pcopt2 24923 pcorevlem 24926 pi1cof 24959 pi1coghm 24961 cnmbfm 34254 cnpconn 35217 cnneiima 48905 |
| Copyright terms: Public domain | W3C validator |