| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23158 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 Topctop 22813 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 |
| This theorem is referenced by: cnco 23186 cncls2i 23190 cnntri 23191 cnss1 23196 cncnpi 23198 cncnp2 23201 cnrest 23205 cnrest2r 23207 paste 23214 cncmp 23312 rncmp 23316 cnconn 23342 connima 23345 conncn 23346 2ndcomap 23378 kgen2cn 23479 txcnmpt 23544 uptx 23545 lmcn2 23569 xkoco1cn 23577 xkoco2cn 23578 xkococnlem 23579 cnmpt11 23583 cnmpt11f 23584 cnmpt1t 23585 cnmpt12 23587 cnmpt21 23591 cnmpt2t 23593 cnmpt22 23594 cnmpt22f 23595 cnmptcom 23598 cnmpt2k 23608 qtopeu 23636 hmeofval 23678 hmeof1o 23684 hmeontr 23689 hmeores 23691 hmeoqtop 23695 hmphen 23705 reghmph 23713 nrmhmph 23714 txhmeo 23723 xpstopnlem1 23729 flfcntr 23963 cnmpopc 24855 ishtpy 24904 htpyco1 24910 htpyco2 24911 isphtpy 24913 phtpyco2 24922 isphtpc 24926 pcofval 24943 pcopt 24955 pcopt2 24956 pcorevlem 24959 pi1cof 24992 pi1coghm 24994 cnmbfm 34247 cnpconn 35210 cnneiima 48898 |
| Copyright terms: Public domain | W3C validator |