| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2730 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23132 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 (class class class)co 7390 Topctop 22787 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 |
| This theorem is referenced by: cnco 23160 cncls2i 23164 cnntri 23165 cnss1 23170 cncnpi 23172 cncnp2 23175 cnrest 23179 cnrest2r 23181 paste 23188 cncmp 23286 rncmp 23290 cnconn 23316 connima 23319 conncn 23320 2ndcomap 23352 kgen2cn 23453 txcnmpt 23518 uptx 23519 lmcn2 23543 xkoco1cn 23551 xkoco2cn 23552 xkococnlem 23553 cnmpt11 23557 cnmpt11f 23558 cnmpt1t 23559 cnmpt12 23561 cnmpt21 23565 cnmpt2t 23567 cnmpt22 23568 cnmpt22f 23569 cnmptcom 23572 cnmpt2k 23582 qtopeu 23610 hmeofval 23652 hmeof1o 23658 hmeontr 23663 hmeores 23665 hmeoqtop 23669 hmphen 23679 reghmph 23687 nrmhmph 23688 txhmeo 23697 xpstopnlem1 23703 flfcntr 23937 cnmpopc 24829 ishtpy 24878 htpyco1 24884 htpyco2 24885 isphtpy 24887 phtpyco2 24896 isphtpc 24900 pcofval 24917 pcopt 24929 pcopt2 24930 pcorevlem 24933 pi1cof 24966 pi1coghm 24968 cnmbfm 34261 cnpconn 35224 cnneiima 48909 |
| Copyright terms: Public domain | W3C validator |