![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version |
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2740 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 23267 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 (class class class)co 7448 Topctop 22920 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: cnco 23295 cncls2i 23299 cnntri 23300 cnss1 23305 cncnpi 23307 cncnp2 23310 cnrest 23314 cnrest2r 23316 paste 23323 cncmp 23421 rncmp 23425 cnconn 23451 connima 23454 conncn 23455 2ndcomap 23487 kgen2cn 23588 txcnmpt 23653 uptx 23654 lmcn2 23678 xkoco1cn 23686 xkoco2cn 23687 xkococnlem 23688 cnmpt11 23692 cnmpt11f 23693 cnmpt1t 23694 cnmpt12 23696 cnmpt21 23700 cnmpt2t 23702 cnmpt22 23703 cnmpt22f 23704 cnmptcom 23707 cnmpt2k 23717 qtopeu 23745 hmeofval 23787 hmeof1o 23793 hmeontr 23798 hmeores 23800 hmeoqtop 23804 hmphen 23814 reghmph 23822 nrmhmph 23823 txhmeo 23832 xpstopnlem1 23838 flfcntr 24072 cnmpopc 24974 ishtpy 25023 htpyco1 25029 htpyco2 25030 isphtpy 25032 phtpyco2 25041 isphtpc 25045 pcofval 25062 pcopt 25074 pcopt2 25075 pcorevlem 25078 pi1cof 25111 pi1coghm 25113 cnmbfm 34228 cnpconn 35198 cnneiima 48596 |
Copyright terms: Public domain | W3C validator |