| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2735 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23174 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∪ cuni 4883 ◡ccnv 5653 “ cima 5657 ⟶wf 6526 (class class class)co 7403 Topctop 22829 Cn ccn 23160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-top 22830 df-topon 22847 df-cn 23163 |
| This theorem is referenced by: cnco 23202 cncls2i 23206 cnntri 23207 cnss1 23212 cncnpi 23214 cncnp2 23217 cnrest 23221 cnrest2r 23223 paste 23230 cncmp 23328 rncmp 23332 cnconn 23358 connima 23361 conncn 23362 2ndcomap 23394 kgen2cn 23495 txcnmpt 23560 uptx 23561 lmcn2 23585 xkoco1cn 23593 xkoco2cn 23594 xkococnlem 23595 cnmpt11 23599 cnmpt11f 23600 cnmpt1t 23601 cnmpt12 23603 cnmpt21 23607 cnmpt2t 23609 cnmpt22 23610 cnmpt22f 23611 cnmptcom 23614 cnmpt2k 23624 qtopeu 23652 hmeofval 23694 hmeof1o 23700 hmeontr 23705 hmeores 23707 hmeoqtop 23711 hmphen 23721 reghmph 23729 nrmhmph 23730 txhmeo 23739 xpstopnlem1 23745 flfcntr 23979 cnmpopc 24871 ishtpy 24920 htpyco1 24926 htpyco2 24927 isphtpy 24929 phtpyco2 24938 isphtpc 24942 pcofval 24959 pcopt 24971 pcopt2 24972 pcorevlem 24975 pi1cof 25008 pi1coghm 25010 cnmbfm 34241 cnpconn 35198 cnneiima 48839 |
| Copyright terms: Public domain | W3C validator |