Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version |
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2738 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22297 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 (class class class)co 7255 Topctop 21950 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: cnco 22325 cncls2i 22329 cnntri 22330 cnss1 22335 cncnpi 22337 cncnp2 22340 cnrest 22344 cnrest2r 22346 paste 22353 cncmp 22451 rncmp 22455 cnconn 22481 connima 22484 conncn 22485 2ndcomap 22517 kgen2cn 22618 txcnmpt 22683 uptx 22684 lmcn2 22708 xkoco1cn 22716 xkoco2cn 22717 xkococnlem 22718 cnmpt11 22722 cnmpt11f 22723 cnmpt1t 22724 cnmpt12 22726 cnmpt21 22730 cnmpt2t 22732 cnmpt22 22733 cnmpt22f 22734 cnmptcom 22737 cnmpt2k 22747 qtopeu 22775 hmeofval 22817 hmeof1o 22823 hmeontr 22828 hmeores 22830 hmeoqtop 22834 hmphen 22844 reghmph 22852 nrmhmph 22853 txhmeo 22862 xpstopnlem1 22868 flfcntr 23102 cnmpopc 23997 ishtpy 24041 htpyco1 24047 htpyco2 24048 isphtpy 24050 phtpyco2 24059 isphtpc 24063 pcofval 24079 pcopt 24091 pcopt2 24092 pcorevlem 24095 pi1cof 24128 pi1coghm 24130 cnmbfm 32130 cnpconn 33092 cnneiima 46098 |
Copyright terms: Public domain | W3C validator |