![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version |
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2734 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 23261 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ∪ cuni 4911 ◡ccnv 5687 “ cima 5691 ⟶wf 6558 (class class class)co 7430 Topctop 22914 Cn ccn 23247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-top 22915 df-topon 22932 df-cn 23250 |
This theorem is referenced by: cnco 23289 cncls2i 23293 cnntri 23294 cnss1 23299 cncnpi 23301 cncnp2 23304 cnrest 23308 cnrest2r 23310 paste 23317 cncmp 23415 rncmp 23419 cnconn 23445 connima 23448 conncn 23449 2ndcomap 23481 kgen2cn 23582 txcnmpt 23647 uptx 23648 lmcn2 23672 xkoco1cn 23680 xkoco2cn 23681 xkococnlem 23682 cnmpt11 23686 cnmpt11f 23687 cnmpt1t 23688 cnmpt12 23690 cnmpt21 23694 cnmpt2t 23696 cnmpt22 23697 cnmpt22f 23698 cnmptcom 23701 cnmpt2k 23711 qtopeu 23739 hmeofval 23781 hmeof1o 23787 hmeontr 23792 hmeores 23794 hmeoqtop 23798 hmphen 23808 reghmph 23816 nrmhmph 23817 txhmeo 23826 xpstopnlem1 23832 flfcntr 24066 cnmpopc 24968 ishtpy 25017 htpyco1 25023 htpyco2 25024 isphtpy 25026 phtpyco2 25035 isphtpc 25039 pcofval 25056 pcopt 25068 pcopt2 25069 pcorevlem 25072 pi1cof 25105 pi1coghm 25107 cnmbfm 34244 cnpconn 35214 cnneiima 48712 |
Copyright terms: Public domain | W3C validator |