| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23101 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 Topctop 22756 Cn ccn 23087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 |
| This theorem is referenced by: cnco 23129 cncls2i 23133 cnntri 23134 cnss1 23139 cncnpi 23141 cncnp2 23144 cnrest 23148 cnrest2r 23150 paste 23157 cncmp 23255 rncmp 23259 cnconn 23285 connima 23288 conncn 23289 2ndcomap 23321 kgen2cn 23422 txcnmpt 23487 uptx 23488 lmcn2 23512 xkoco1cn 23520 xkoco2cn 23521 xkococnlem 23522 cnmpt11 23526 cnmpt11f 23527 cnmpt1t 23528 cnmpt12 23530 cnmpt21 23534 cnmpt2t 23536 cnmpt22 23537 cnmpt22f 23538 cnmptcom 23541 cnmpt2k 23551 qtopeu 23579 hmeofval 23621 hmeof1o 23627 hmeontr 23632 hmeores 23634 hmeoqtop 23638 hmphen 23648 reghmph 23656 nrmhmph 23657 txhmeo 23666 xpstopnlem1 23672 flfcntr 23906 cnmpopc 24798 ishtpy 24847 htpyco1 24853 htpyco2 24854 isphtpy 24856 phtpyco2 24865 isphtpc 24869 pcofval 24886 pcopt 24898 pcopt2 24899 pcorevlem 24902 pi1cof 24935 pi1coghm 24937 cnmbfm 34227 cnpconn 35190 cnneiima 48878 |
| Copyright terms: Public domain | W3C validator |