| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23123 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 (class class class)co 7349 Topctop 22778 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: cnco 23151 cncls2i 23155 cnntri 23156 cnss1 23161 cncnpi 23163 cncnp2 23166 cnrest 23170 cnrest2r 23172 paste 23179 cncmp 23277 rncmp 23281 cnconn 23307 connima 23310 conncn 23311 2ndcomap 23343 kgen2cn 23444 txcnmpt 23509 uptx 23510 lmcn2 23534 xkoco1cn 23542 xkoco2cn 23543 xkococnlem 23544 cnmpt11 23548 cnmpt11f 23549 cnmpt1t 23550 cnmpt12 23552 cnmpt21 23556 cnmpt2t 23558 cnmpt22 23559 cnmpt22f 23560 cnmptcom 23563 cnmpt2k 23573 qtopeu 23601 hmeofval 23643 hmeof1o 23649 hmeontr 23654 hmeores 23656 hmeoqtop 23660 hmphen 23670 reghmph 23678 nrmhmph 23679 txhmeo 23688 xpstopnlem1 23694 flfcntr 23928 cnmpopc 24820 ishtpy 24869 htpyco1 24875 htpyco2 24876 isphtpy 24878 phtpyco2 24887 isphtpc 24891 pcofval 24908 pcopt 24920 pcopt2 24921 pcorevlem 24924 pi1cof 24957 pi1coghm 24959 cnmbfm 34231 cnpconn 35207 cnneiima 48905 |
| Copyright terms: Public domain | W3C validator |