Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version |
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2738 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22389 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simplbi 498 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
5 | 4 | simprd 496 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∪ cuni 4839 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 (class class class)co 7275 Topctop 22042 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-top 22043 df-topon 22060 df-cn 22378 |
This theorem is referenced by: cnco 22417 cncls2i 22421 cnntri 22422 cnss1 22427 cncnpi 22429 cncnp2 22432 cnrest 22436 cnrest2r 22438 paste 22445 cncmp 22543 rncmp 22547 cnconn 22573 connima 22576 conncn 22577 2ndcomap 22609 kgen2cn 22710 txcnmpt 22775 uptx 22776 lmcn2 22800 xkoco1cn 22808 xkoco2cn 22809 xkococnlem 22810 cnmpt11 22814 cnmpt11f 22815 cnmpt1t 22816 cnmpt12 22818 cnmpt21 22822 cnmpt2t 22824 cnmpt22 22825 cnmpt22f 22826 cnmptcom 22829 cnmpt2k 22839 qtopeu 22867 hmeofval 22909 hmeof1o 22915 hmeontr 22920 hmeores 22922 hmeoqtop 22926 hmphen 22936 reghmph 22944 nrmhmph 22945 txhmeo 22954 xpstopnlem1 22960 flfcntr 23194 cnmpopc 24091 ishtpy 24135 htpyco1 24141 htpyco2 24142 isphtpy 24144 phtpyco2 24153 isphtpc 24157 pcofval 24173 pcopt 24185 pcopt2 24186 pcorevlem 24189 pi1cof 24222 pi1coghm 24224 cnmbfm 32230 cnpconn 33192 cnneiima 46210 |
Copyright terms: Public domain | W3C validator |